Hypothermia improves neuronal network recovery in a human-derived in vitro model of oxygen-deprivation.
Mild therapeutic hypothermia showed potential neuroprotective properties during and after cerebral hypoxia or ischemia in experimental animal studies. However, in clinical trials, where hypothermia is mainly applied after reperfusion, results were divergent and neurophysiological effects unclear. In...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2024-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0314913 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841555455375048704 |
---|---|
author | Eva J H F Voogd Marloes Thijs Marloes R Levers Jeannette Hofmeijer Monica Frega |
author_facet | Eva J H F Voogd Marloes Thijs Marloes R Levers Jeannette Hofmeijer Monica Frega |
author_sort | Eva J H F Voogd |
collection | DOAJ |
description | Mild therapeutic hypothermia showed potential neuroprotective properties during and after cerebral hypoxia or ischemia in experimental animal studies. However, in clinical trials, where hypothermia is mainly applied after reperfusion, results were divergent and neurophysiological effects unclear. In our current study, we employed human-derived neuronal networks to investigate how treatment with hypothermia during hypoxia influences neuronal functionality and whether it improves post-hypoxic recovery. We differentiated neuronal networks from human induced pluripotent stem cells on micro-electrode arrays (MEAs). We studied the effect of hypothermia (34°C)-as well hyperthermia (39°C) - on neuronal functionality during and after hypoxia using MEAs. We also studied the effects on the number of synaptic puncta and cell viability by immunocytochemistry. In comparison to neuronal networks under normothermia, we found that hypothermia during hypoxia improved functional neuronal network recovery, expressed as enhanced neuronal network activity. This was associated with prevention of synaptic loss during and after the hypoxic phase. Furthermore, hypothermia improved cell viability after the hypoxic phase. Instead, hyperthermia during hypoxia had detrimental effects, with an irreversible loss of neuronal network function, loss of synaptic puncta and decreased cell viability. Our results show potential neuroprotective properties of hypothermia occurring during hypoxia, indicating that administering hypothermia to bridge the time to reperfusion may be beneficial in clinical settings. |
format | Article |
id | doaj-art-522b7f27f41049999b70edaeb6306a56 |
institution | Kabale University |
issn | 1932-6203 |
language | English |
publishDate | 2024-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj-art-522b7f27f41049999b70edaeb6306a562025-01-08T05:32:48ZengPublic Library of Science (PLoS)PLoS ONE1932-62032024-01-011912e031491310.1371/journal.pone.0314913Hypothermia improves neuronal network recovery in a human-derived in vitro model of oxygen-deprivation.Eva J H F VoogdMarloes ThijsMarloes R LeversJeannette HofmeijerMonica FregaMild therapeutic hypothermia showed potential neuroprotective properties during and after cerebral hypoxia or ischemia in experimental animal studies. However, in clinical trials, where hypothermia is mainly applied after reperfusion, results were divergent and neurophysiological effects unclear. In our current study, we employed human-derived neuronal networks to investigate how treatment with hypothermia during hypoxia influences neuronal functionality and whether it improves post-hypoxic recovery. We differentiated neuronal networks from human induced pluripotent stem cells on micro-electrode arrays (MEAs). We studied the effect of hypothermia (34°C)-as well hyperthermia (39°C) - on neuronal functionality during and after hypoxia using MEAs. We also studied the effects on the number of synaptic puncta and cell viability by immunocytochemistry. In comparison to neuronal networks under normothermia, we found that hypothermia during hypoxia improved functional neuronal network recovery, expressed as enhanced neuronal network activity. This was associated with prevention of synaptic loss during and after the hypoxic phase. Furthermore, hypothermia improved cell viability after the hypoxic phase. Instead, hyperthermia during hypoxia had detrimental effects, with an irreversible loss of neuronal network function, loss of synaptic puncta and decreased cell viability. Our results show potential neuroprotective properties of hypothermia occurring during hypoxia, indicating that administering hypothermia to bridge the time to reperfusion may be beneficial in clinical settings.https://doi.org/10.1371/journal.pone.0314913 |
spellingShingle | Eva J H F Voogd Marloes Thijs Marloes R Levers Jeannette Hofmeijer Monica Frega Hypothermia improves neuronal network recovery in a human-derived in vitro model of oxygen-deprivation. PLoS ONE |
title | Hypothermia improves neuronal network recovery in a human-derived in vitro model of oxygen-deprivation. |
title_full | Hypothermia improves neuronal network recovery in a human-derived in vitro model of oxygen-deprivation. |
title_fullStr | Hypothermia improves neuronal network recovery in a human-derived in vitro model of oxygen-deprivation. |
title_full_unstemmed | Hypothermia improves neuronal network recovery in a human-derived in vitro model of oxygen-deprivation. |
title_short | Hypothermia improves neuronal network recovery in a human-derived in vitro model of oxygen-deprivation. |
title_sort | hypothermia improves neuronal network recovery in a human derived in vitro model of oxygen deprivation |
url | https://doi.org/10.1371/journal.pone.0314913 |
work_keys_str_mv | AT evajhfvoogd hypothermiaimprovesneuronalnetworkrecoveryinahumanderivedinvitromodelofoxygendeprivation AT marloesthijs hypothermiaimprovesneuronalnetworkrecoveryinahumanderivedinvitromodelofoxygendeprivation AT marloesrlevers hypothermiaimprovesneuronalnetworkrecoveryinahumanderivedinvitromodelofoxygendeprivation AT jeannettehofmeijer hypothermiaimprovesneuronalnetworkrecoveryinahumanderivedinvitromodelofoxygendeprivation AT monicafrega hypothermiaimprovesneuronalnetworkrecoveryinahumanderivedinvitromodelofoxygendeprivation |