An effective vessel segmentation method using SLOA-HGC

Abstract Accurate segmentation of retinal blood vessels from retinal images is crucial for detecting and diagnosing a wide range of ophthalmic diseases. Our retinal blood vessel segmentation algorithm enhances microfine vessel extraction, improves edge texture clarity, and normalizes vessel distribu...

Full description

Saved in:
Bibliographic Details
Main Authors: Zerui Liu, Junliang Du, Weisi Dai, Wenke Zhu, Ziqing Ye, Lin Li, Zewei Liu, Linan Hu, Lin Chen, Lixiang Sun
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-024-84901-3
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Accurate segmentation of retinal blood vessels from retinal images is crucial for detecting and diagnosing a wide range of ophthalmic diseases. Our retinal blood vessel segmentation algorithm enhances microfine vessel extraction, improves edge texture clarity, and normalizes vessel distribution. It stabilizes neural network training for complex retinal vascular features. Channel-aware self-attention (CAS) improves microfine vessel segmentation sensitivity. Heterogeneous adaptive pooling (HAP) facilitates accurate vessel edge segmentation through multi-scale feature extraction. The ghost fully convolutional Rectified Linear Unit (GFCReLU) module in the output convolutional layer captures deep semantic information for better vessel localization. Optimization training with Sparrow-Integrated Lion Optimization Algorithm (SLOA) employs sparrow stochastic updating and annealing to fine-tune parameters. The results of the experiments on our homemade dataset and three public datasets are as follows: Mean Intersection over Union (MIoU) of 80.61%, 76.14%, 76.90%, 74.11%; Dice coefficients of 78.97%, 72.51%, 72.84%, 68.93%; and accuracies of 94.83%, 95.74%, 96.67%, 95.81% respectively. The model effectively segments retinal blood vessels, offering potential for diagnosing ophthalmic diseases. Our dataset is available at https://github.com/ZhouGuoXiong/Retinal-blood-vessels-for-segmentation .
ISSN:2045-2322