Global bifurcation of positive solutions for a superlinear $p$-Laplacian system
We are concerned with the principal eigenvalue of \begin{equation*} \begin{cases} -\Delta_p u= \lambda\theta_1\varphi_p(v), &x\in \Omega,\\ -\Delta_p v= \lambda\theta_2\varphi_p(u), &x\in \Omega,\\ u=0=v,\ &x\in\partial\Omega \end{cases} \tag{P} \end{equation*...
Saved in:
Main Authors: | Lijuan Yang, Ruyun Ma |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2024-08-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=10984 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Structures and evolution of bifurcation diagrams for a multiparameter $p$-Laplacian Dirichlet problem
by: Tsung-Yi Hsieh, et al.
Published: (2024-11-01) -
Nonexistence results of solutions for some fractional $p$-Laplacian equations in $\mathbb{R}^{N}$
by: Yuxin Chen, et al.
Published: (2024-07-01) -
Instability of energy solutions, travelling waves, and scaling invariance for a fourth-order p-Laplacian operator with superlinear reaction
by: Jose Luis Diaz Palencia
Published: (2024-11-01) -
First eigenvalue of submanifolds in Euclidean space
by: Kairen Cai
Published: (2000-01-01) -
Bifurcation analysis of fractional Kirchhoff–Schrödinger–Poisson systems in $\mathbb R^3$
by: Linlin Wang, et al.
Published: (2024-01-01)