Stability analysis and Hopf bifurcation of a fractional order HIV model with saturated incidence rate and time delay

In this paper, a fractional order HIV model with saturated incidence rate and time delay is proposed and analyzed. Firstly, the existence and uniqueness of positive solutions are proved. Secondly, the basic reproduction number and the sufficient conditions for the stability of two equilibriums are o...

Full description

Saved in:
Bibliographic Details
Main Authors: Ruiqing Shi, Yihong Zhang
Format: Article
Language:English
Published: Elsevier 2024-12-01
Series:Alexandria Engineering Journal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1110016824007932
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a fractional order HIV model with saturated incidence rate and time delay is proposed and analyzed. Firstly, the existence and uniqueness of positive solutions are proved. Secondly, the basic reproduction number and the sufficient conditions for the stability of two equilibriums are obtained. Thirdly, by using time delay as the bifurcation parameter, it is found that Hopf bifurcation may occur when the time delay passes through a sequence of critical values. After that, some numerical simulations are performed to verify the theoretical results. Finally, some discussions and conclusions are listed.
ISSN:1110-0168