Impact Analysis of Orthogonal Circular-Polarized Interference on GNSS Spatial Anti-Jamming Array

With the continuous advancement of electromagnetic countermeasures, new types of interference signals (e.g., multi-polarization suppression interference) pose a significant threat to conventional Global Navigation Satellite System (GNSS) services, even when the receiver employs a right-handed circul...

Full description

Saved in:
Bibliographic Details
Main Authors: Ke Zhang, Xiangjun Li, Lei Chen, Zengjun Liu, Yuchen Xie
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/16/23/4506
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the continuous advancement of electromagnetic countermeasures, new types of interference signals (e.g., multi-polarization suppression interference) pose a significant threat to conventional Global Navigation Satellite System (GNSS) services, even when the receiver employs a right-handed circularly polarized (RHCP) anti-jamming array. This paper proposes a receiving signal model for orthogonal circularly polarized (OCP) interference signals based on conventional arrays, following an analysis of the non-ideal characteristics of actual arrays. Furthermore, the mechanism by which OCP interference signals affect anti-jamming performance is examined. Power inversion (PI) and linear constrained minimum variance (LCMV) techniques, applied to both uniform linear arrays and central circular arrays, are utilized to verify the impact of these interference signals. Simulation and physical testing demonstrate that OCP interference significantly affects the interference subspace of the conventional RHCP array, potentially leading to a reduction in the anti-jamming performance of the receiver. To effectively suppress multi-polarization interference, anti-jamming GNSS receivers must either ensure the consistency of cross-polarization among the elements of the array or adopt polarization-sensitive arrays.
ISSN:2072-4292