The Citron homology domain of MAP4Ks improves outcomes of traumatic brain injury

The mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults. Whether targeting this pathway is beneficial to brain injury remains unclear. In this study, we showed that adeno-associated viru...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoling Zhong, Wenjiao Tai, Meng-Lu Liu, Shuaipeng Ma, Tianjin Shen, Yuhua Zou, Chun-Li Zhang
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2025-11-01
Series:Neural Regeneration Research
Subjects:
Online Access:https://journals.lww.com/10.4103/NRR.NRR-D-24-00113
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) signaling pathway plays a pivotal role in axonal regrowth and neuronal degeneration following insults. Whether targeting this pathway is beneficial to brain injury remains unclear. In this study, we showed that adeno-associated virus-delivery of the Citron homology domain of MAP4Ks effectively reduces traumatic brain injury-induced reactive gliosis, tauopathy, lesion size, and behavioral deficits. Pharmacological inhibition of MAP4Ks replicated the ameliorative effects observed with expression of the Citron homology domain. Mechanistically, the Citron homology domain acted as a dominant-negative mutant, impeding MAP4K-mediated phosphorylation of the dishevelled proteins and thereby controlling the Wnt/β-catenin pathway. These findings implicate a therapeutic potential of targeting MAP4Ks to alleviate the detrimental effects of traumatic brain injury.
ISSN:1673-5374
1876-7958