Preventing excessive autophagy protects from the pathology of mtDNA mutations in Drosophila melanogaster

Abstract Aberration of mitochondrial function is a shared feature of many human pathologies, characterised by changes in metabolic flux, cellular energetics, morphology, composition, and dynamics of the mitochondrial network. While some of these changes serve as compensatory mechanisms to maintain c...

Full description

Saved in:
Bibliographic Details
Main Authors: Najla El Fissi, Florian A. Rosenberger, Kai Chang, Alissa Wilhalm, Tom Barton-Owen, Fynn M. Hansen, Zoe Golder, David Alsina, Anna Wedell, Matthias Mann, Patrick F. Chinnery, Christoph Freyer, Anna Wredenberg
Format: Article
Language:English
Published: Nature Portfolio 2024-12-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55559-2
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846101038335000576
author Najla El Fissi
Florian A. Rosenberger
Kai Chang
Alissa Wilhalm
Tom Barton-Owen
Fynn M. Hansen
Zoe Golder
David Alsina
Anna Wedell
Matthias Mann
Patrick F. Chinnery
Christoph Freyer
Anna Wredenberg
author_facet Najla El Fissi
Florian A. Rosenberger
Kai Chang
Alissa Wilhalm
Tom Barton-Owen
Fynn M. Hansen
Zoe Golder
David Alsina
Anna Wedell
Matthias Mann
Patrick F. Chinnery
Christoph Freyer
Anna Wredenberg
author_sort Najla El Fissi
collection DOAJ
description Abstract Aberration of mitochondrial function is a shared feature of many human pathologies, characterised by changes in metabolic flux, cellular energetics, morphology, composition, and dynamics of the mitochondrial network. While some of these changes serve as compensatory mechanisms to maintain cellular homeostasis, their chronic activation can permanently affect cellular metabolism and signalling, ultimately impairing cell function. Here, we use a Drosophila melanogaster model expressing a proofreading-deficient mtDNA polymerase (POLγexo-) in a genetic screen to find genes that mitigate the harmful accumulation of mtDNA mutations. We identify critical pathways associated with nutrient sensing, insulin signalling, mitochondrial protein import, and autophagy that can rescue the lethal phenotype of the POLγexo- flies. Rescued flies, hemizygous for dilp1, atg2, tim14 or melted, normalise their autophagic flux and proteasome function and adapt their metabolism. Mutation frequencies remain high with the exception of melted-rescued flies, suggesting that melted may act early in development. Treating POLγexo- larvae with the autophagy activator rapamycin aggravates their lethal phenotype, highlighting that excessive autophagy can significantly contribute to the pathophysiology of mitochondrial diseases. Moreover, we show that the nucleation process of autophagy is a critical target for intervention.
format Article
id doaj-art-3f7fc21ea23d431f83a462ffeccd4b16
institution Kabale University
issn 2041-1723
language English
publishDate 2024-12-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-3f7fc21ea23d431f83a462ffeccd4b162024-12-29T12:38:03ZengNature PortfolioNature Communications2041-17232024-12-0115111510.1038/s41467-024-55559-2Preventing excessive autophagy protects from the pathology of mtDNA mutations in Drosophila melanogasterNajla El Fissi0Florian A. Rosenberger1Kai Chang2Alissa Wilhalm3Tom Barton-Owen4Fynn M. Hansen5Zoe Golder6David Alsina7Anna Wedell8Matthias Mann9Patrick F. Chinnery10Christoph Freyer11Anna Wredenberg12Department of Medical Biochemistry and Biophysics, Karolinska InstitutetProteomics and Signal Transduction, Max-Planck Institute of BiochemistryDepartment of Medical Biochemistry and Biophysics, Karolinska InstitutetDepartment of Medical Biochemistry and Biophysics, Karolinska InstitutetDepartment of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical CampusProteomics and Signal Transduction, Max-Planck Institute of BiochemistryDepartment of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical CampusDepartment of Medical Biochemistry and Biophysics, Karolinska InstitutetCentre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76Proteomics and Signal Transduction, Max-Planck Institute of BiochemistryDepartment of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical CampusDepartment of Medical Biochemistry and Biophysics, Karolinska InstitutetDepartment of Medical Biochemistry and Biophysics, Karolinska InstitutetAbstract Aberration of mitochondrial function is a shared feature of many human pathologies, characterised by changes in metabolic flux, cellular energetics, morphology, composition, and dynamics of the mitochondrial network. While some of these changes serve as compensatory mechanisms to maintain cellular homeostasis, their chronic activation can permanently affect cellular metabolism and signalling, ultimately impairing cell function. Here, we use a Drosophila melanogaster model expressing a proofreading-deficient mtDNA polymerase (POLγexo-) in a genetic screen to find genes that mitigate the harmful accumulation of mtDNA mutations. We identify critical pathways associated with nutrient sensing, insulin signalling, mitochondrial protein import, and autophagy that can rescue the lethal phenotype of the POLγexo- flies. Rescued flies, hemizygous for dilp1, atg2, tim14 or melted, normalise their autophagic flux and proteasome function and adapt their metabolism. Mutation frequencies remain high with the exception of melted-rescued flies, suggesting that melted may act early in development. Treating POLγexo- larvae with the autophagy activator rapamycin aggravates their lethal phenotype, highlighting that excessive autophagy can significantly contribute to the pathophysiology of mitochondrial diseases. Moreover, we show that the nucleation process of autophagy is a critical target for intervention.https://doi.org/10.1038/s41467-024-55559-2
spellingShingle Najla El Fissi
Florian A. Rosenberger
Kai Chang
Alissa Wilhalm
Tom Barton-Owen
Fynn M. Hansen
Zoe Golder
David Alsina
Anna Wedell
Matthias Mann
Patrick F. Chinnery
Christoph Freyer
Anna Wredenberg
Preventing excessive autophagy protects from the pathology of mtDNA mutations in Drosophila melanogaster
Nature Communications
title Preventing excessive autophagy protects from the pathology of mtDNA mutations in Drosophila melanogaster
title_full Preventing excessive autophagy protects from the pathology of mtDNA mutations in Drosophila melanogaster
title_fullStr Preventing excessive autophagy protects from the pathology of mtDNA mutations in Drosophila melanogaster
title_full_unstemmed Preventing excessive autophagy protects from the pathology of mtDNA mutations in Drosophila melanogaster
title_short Preventing excessive autophagy protects from the pathology of mtDNA mutations in Drosophila melanogaster
title_sort preventing excessive autophagy protects from the pathology of mtdna mutations in drosophila melanogaster
url https://doi.org/10.1038/s41467-024-55559-2
work_keys_str_mv AT najlaelfissi preventingexcessiveautophagyprotectsfromthepathologyofmtdnamutationsindrosophilamelanogaster
AT florianarosenberger preventingexcessiveautophagyprotectsfromthepathologyofmtdnamutationsindrosophilamelanogaster
AT kaichang preventingexcessiveautophagyprotectsfromthepathologyofmtdnamutationsindrosophilamelanogaster
AT alissawilhalm preventingexcessiveautophagyprotectsfromthepathologyofmtdnamutationsindrosophilamelanogaster
AT tombartonowen preventingexcessiveautophagyprotectsfromthepathologyofmtdnamutationsindrosophilamelanogaster
AT fynnmhansen preventingexcessiveautophagyprotectsfromthepathologyofmtdnamutationsindrosophilamelanogaster
AT zoegolder preventingexcessiveautophagyprotectsfromthepathologyofmtdnamutationsindrosophilamelanogaster
AT davidalsina preventingexcessiveautophagyprotectsfromthepathologyofmtdnamutationsindrosophilamelanogaster
AT annawedell preventingexcessiveautophagyprotectsfromthepathologyofmtdnamutationsindrosophilamelanogaster
AT matthiasmann preventingexcessiveautophagyprotectsfromthepathologyofmtdnamutationsindrosophilamelanogaster
AT patrickfchinnery preventingexcessiveautophagyprotectsfromthepathologyofmtdnamutationsindrosophilamelanogaster
AT christophfreyer preventingexcessiveautophagyprotectsfromthepathologyofmtdnamutationsindrosophilamelanogaster
AT annawredenberg preventingexcessiveautophagyprotectsfromthepathologyofmtdnamutationsindrosophilamelanogaster