Reconstruction algorithm for block compressed sensing based on variation model

The algorithms for block compressed sensing based on total variation and mixed variation (abbreviated as BCS-TV and BCS-MV) models were proposed to improve the performance of current reconstruction algorithms for the block-based compressed sensing. In the measuring phase, an image was sampled block-...

Full description

Saved in:
Bibliographic Details
Main Authors: Jian CHEN, xiong SUKai, zhi YANGXiu, kui ZHENGMing, qun LINLi
Format: Article
Language:zho
Published: Editorial Department of Journal on Communications 2016-01-01
Series:Tongxin xuebao
Subjects:
Online Access:http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2016011/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The algorithms for block compressed sensing based on total variation and mixed variation (abbreviated as BCS-TV and BCS-MV) models were proposed to improve the performance of current reconstruction algorithms for the block-based compressed sensing. In the measuring phase, an image was sampled block-by-block. In the recovering period, it took the sparse regularization of the natural image as a priori knowledge, and approached the target function within the whole image through the modified augmented Lagrange method and alternating direction method of multipliers (ALM-ADMM). The method proposed achieves average PSNR gain of 1.5 dB and SSIM gain of 0.05 at a more stable running speed, over the previous uniformly block-based compressed sensing. It is particularly suitable for the applications of the multimedia data processing with fixed transmission delay.
ISSN:1000-436X