Vibration Analysis of a Tetra-Layered FGM Cylindrical Shell Using Ring Support

In the present study, the vibration characteristics of a cylindrical shell (CS) made up of four layers are investigated. The ring is placed in the axial direction of a four-layered functionally graded material (FGM) cylindrical shell. The layers are made of functionally graded material (FGM). The ma...

Full description

Saved in:
Bibliographic Details
Main Authors: Asra Ayub, Naveed Hussain, Ahmad N. Al-Kenani, Madiha Ghamkhar
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/1/155
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, the vibration characteristics of a cylindrical shell (CS) made up of four layers are investigated. The ring is placed in the axial direction of a four-layered functionally graded material (FGM) cylindrical shell. The layers are made of functionally graded material (FGM). The materials used are stainless steel, aluminum, zirconia, and nickel. The frequency equations are derived by employing Sander’s shell theory and the Rayleigh–Ritz (RR) mathematical technique. Vibration characteristics of functionally graded materials have been investigated using polynomial volume fraction law for all FGM layers. The characteristic beam functions have been used to determine the axial model dependency. The natural frequencies are obtained with simply supported boundary conditions by using MATLAB software. Several analogical assessments of shell frequencies have also been conducted to confirm the accuracy and dependability of the current technique.
ISSN:2227-7390