A thin film lithium niobate near-infrared platform for multiplexing quantum nodes

Abstract Practical quantum networks will require multi-qubit quantum nodes. This in turn will increase the complexity of the photonic circuits needed to control each qubit and require strategies to multiplex memories. Integrated photonics operating at visible to near-infrared (VNIR) wavelength range...

Full description

Saved in:
Bibliographic Details
Main Authors: Daniel Assumpcao, Dylan Renaud, Aida Baradari, Beibei Zeng, Chawina De-Eknamkul, C. J. Xin, Amirhassan Shams-Ansari, David Barton, Bartholomeus Machielse, Marko Loncar
Format: Article
Language:English
Published: Nature Portfolio 2024-12-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-54541-2
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846136972046761984
author Daniel Assumpcao
Dylan Renaud
Aida Baradari
Beibei Zeng
Chawina De-Eknamkul
C. J. Xin
Amirhassan Shams-Ansari
David Barton
Bartholomeus Machielse
Marko Loncar
author_facet Daniel Assumpcao
Dylan Renaud
Aida Baradari
Beibei Zeng
Chawina De-Eknamkul
C. J. Xin
Amirhassan Shams-Ansari
David Barton
Bartholomeus Machielse
Marko Loncar
author_sort Daniel Assumpcao
collection DOAJ
description Abstract Practical quantum networks will require multi-qubit quantum nodes. This in turn will increase the complexity of the photonic circuits needed to control each qubit and require strategies to multiplex memories. Integrated photonics operating at visible to near-infrared (VNIR) wavelength range can provide solutions to these needs. In this work, we realize a VNIR thin-film lithium niobate (TFLN) integrated photonics platform with the key components to meet these requirements, including low-loss couplers (<1 dB/facet), switches (>20 dB extinction), and high-bandwidth electro-optic modulators (>50 GHz). With these devices, we demonstrate high-efficiency and CW-compatible frequency shifting (>50% efficiency at 15 GHz), as well as simultaneous laser amplitude and frequency control. Finally, we highlight an architecture for multiplexing quantum memories and outline how this platform can enable a 2-order of magnitude improvement in entanglement rates over single memory nodes. Our results demonstrate that TFLN can meet the necessary performance and scalability benchmarks to enable large-scale quantum nodes.
format Article
id doaj-art-3a474a717a3740c6a0c54f00dcfd17d4
institution Kabale University
issn 2041-1723
language English
publishDate 2024-12-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-3a474a717a3740c6a0c54f00dcfd17d42024-12-08T12:35:22ZengNature PortfolioNature Communications2041-17232024-12-011511910.1038/s41467-024-54541-2A thin film lithium niobate near-infrared platform for multiplexing quantum nodesDaniel Assumpcao0Dylan Renaud1Aida Baradari2Beibei Zeng3Chawina De-Eknamkul4C. J. Xin5Amirhassan Shams-Ansari6David Barton7Bartholomeus Machielse8Marko Loncar9John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityJohn A. Paulson School of Engineering and Applied Sciences, Harvard UniversityJohn A. Paulson School of Engineering and Applied Sciences, Harvard UniversityAWS Center for Quantum NetworkingAWS Center for Quantum NetworkingJohn A. Paulson School of Engineering and Applied Sciences, Harvard UniversityDRS Daylight SolutionsJohn A. Paulson School of Engineering and Applied Sciences, Harvard UniversityAWS Center for Quantum NetworkingJohn A. Paulson School of Engineering and Applied Sciences, Harvard UniversityAbstract Practical quantum networks will require multi-qubit quantum nodes. This in turn will increase the complexity of the photonic circuits needed to control each qubit and require strategies to multiplex memories. Integrated photonics operating at visible to near-infrared (VNIR) wavelength range can provide solutions to these needs. In this work, we realize a VNIR thin-film lithium niobate (TFLN) integrated photonics platform with the key components to meet these requirements, including low-loss couplers (<1 dB/facet), switches (>20 dB extinction), and high-bandwidth electro-optic modulators (>50 GHz). With these devices, we demonstrate high-efficiency and CW-compatible frequency shifting (>50% efficiency at 15 GHz), as well as simultaneous laser amplitude and frequency control. Finally, we highlight an architecture for multiplexing quantum memories and outline how this platform can enable a 2-order of magnitude improvement in entanglement rates over single memory nodes. Our results demonstrate that TFLN can meet the necessary performance and scalability benchmarks to enable large-scale quantum nodes.https://doi.org/10.1038/s41467-024-54541-2
spellingShingle Daniel Assumpcao
Dylan Renaud
Aida Baradari
Beibei Zeng
Chawina De-Eknamkul
C. J. Xin
Amirhassan Shams-Ansari
David Barton
Bartholomeus Machielse
Marko Loncar
A thin film lithium niobate near-infrared platform for multiplexing quantum nodes
Nature Communications
title A thin film lithium niobate near-infrared platform for multiplexing quantum nodes
title_full A thin film lithium niobate near-infrared platform for multiplexing quantum nodes
title_fullStr A thin film lithium niobate near-infrared platform for multiplexing quantum nodes
title_full_unstemmed A thin film lithium niobate near-infrared platform for multiplexing quantum nodes
title_short A thin film lithium niobate near-infrared platform for multiplexing quantum nodes
title_sort thin film lithium niobate near infrared platform for multiplexing quantum nodes
url https://doi.org/10.1038/s41467-024-54541-2
work_keys_str_mv AT danielassumpcao athinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT dylanrenaud athinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT aidabaradari athinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT beibeizeng athinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT chawinadeeknamkul athinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT cjxin athinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT amirhassanshamsansari athinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT davidbarton athinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT bartholomeusmachielse athinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT markoloncar athinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT danielassumpcao thinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT dylanrenaud thinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT aidabaradari thinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT beibeizeng thinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT chawinadeeknamkul thinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT cjxin thinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT amirhassanshamsansari thinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT davidbarton thinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT bartholomeusmachielse thinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes
AT markoloncar thinfilmlithiumniobatenearinfraredplatformformultiplexingquantumnodes