A machine-learning reconstruction of sea surface <i>p</i>CO<sub>2</sub> in the North American Atlantic Coastal Ocean Margin from 1993 to 2021

<p>Insufficient spatiotemporal coverage of observations of the surface partial pressure of CO<span class="inline-formula"><sub>2</sub></span> (<span class="inline-formula"><i>p</i></span>CO<span class="inline-formula&q...

Full description

Saved in:
Bibliographic Details
Main Authors: Z. Wu, W. Lu, A. Roobaert, L. Song, X.-H. Yan, W.-J. Cai
Format: Article
Language:English
Published: Copernicus Publications 2025-01-01
Series:Earth System Science Data
Online Access:https://essd.copernicus.org/articles/17/43/2025/essd-17-43-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841554693405278208
author Z. Wu
Z. Wu
W. Lu
A. Roobaert
L. Song
X.-H. Yan
W.-J. Cai
author_facet Z. Wu
Z. Wu
W. Lu
A. Roobaert
L. Song
X.-H. Yan
W.-J. Cai
author_sort Z. Wu
collection DOAJ
description <p>Insufficient spatiotemporal coverage of observations of the surface partial pressure of CO<span class="inline-formula"><sub>2</sub></span> (<span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span>) has hindered precise carbon cycle studies in coastal oceans and justifies the development of spatially and temporally continuous <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> data products. Earlier <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> products have difficulties in capturing the heterogeneity of regional variations and decadal trends of <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> in the North American Atlantic Coastal Ocean Margin (NAACOM). This study developed a regional reconstructed <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> product for the NAACOM (Reconstructed Coastal Acidification Database-<span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span>, or ReCAD-NAACOM-<span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span>) using a two-step approach combining random forest regression and linear regression. The product provides monthly <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> data at 0.25° spatial resolution from 1993 to 2021, enabling investigation of regional spatial differences, seasonal cycles, and decadal changes in <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span>. The observation-based reconstruction was trained using Surface Ocean CO<span class="inline-formula"><sub>2</sub></span> Atlas (SOCAT) observations as observational values, with various satellite-derived and reanalysis environmental variables known to control sea surface <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> as model inputs. The product shows high accuracy during the model training, validation, and independent test phases, demonstrating robustness and a capability to accurately reconstruct <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> in regions or periods lacking direct observational data. Compared with all the observation samples from SOCAT, the <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> product yields a determination coefficient of 0.92, a root-mean-square error of 12.70 <span class="inline-formula">µ</span>atm, and an accumulative uncertainty of 23.25 <span class="inline-formula">µ</span>atm. The ReCAD-NAACOM-<span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> product demonstrates its capability to resolve seasonal cycles, regional-scale variations, and decadal trends of <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> along the NAACOM. This new product provides reliable <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> data for more precise studies of coastal carbon dynamics in the NAACOM region. The dataset is publicly accessible at <span class="uri">https://doi.org/10.5281/zenodo.14038561</span> (Wu et al., 2024a) and will be updated regularly.</p>
format Article
id doaj-art-3699acc0bbd4442f937a8e2fb79f1a06
institution Kabale University
issn 1866-3508
1866-3516
language English
publishDate 2025-01-01
publisher Copernicus Publications
record_format Article
series Earth System Science Data
spelling doaj-art-3699acc0bbd4442f937a8e2fb79f1a062025-01-08T10:57:15ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162025-01-0117436310.5194/essd-17-43-2025A machine-learning reconstruction of sea surface <i>p</i>CO<sub>2</sub> in the North American Atlantic Coastal Ocean Margin from 1993 to 2021Z. Wu0Z. Wu1W. Lu2A. Roobaert3L. Song4X.-H. Yan5W.-J. Cai6State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Science, Xiamen University, Xiamen, Fujian, 361102, ChinaSchool of Marine Science and Policy, University of Delaware, Newark, Delaware 19716, USASchool of Marine Sciences, State Key Laboratory of Environmental Adaptability for Industrial Products, Sun Yat-sen University, Zhuhai, Guangdong, 519082, ChinaFlanders Marine Institute (VLIZ), Jacobsenstraat 1, Ostend, 8400, BelgiumSchool of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, ChinaSchool of Marine Science and Policy, University of Delaware, Newark, Delaware 19716, USASchool of Marine Science and Policy, University of Delaware, Newark, Delaware 19716, USA<p>Insufficient spatiotemporal coverage of observations of the surface partial pressure of CO<span class="inline-formula"><sub>2</sub></span> (<span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span>) has hindered precise carbon cycle studies in coastal oceans and justifies the development of spatially and temporally continuous <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> data products. Earlier <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> products have difficulties in capturing the heterogeneity of regional variations and decadal trends of <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> in the North American Atlantic Coastal Ocean Margin (NAACOM). This study developed a regional reconstructed <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> product for the NAACOM (Reconstructed Coastal Acidification Database-<span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span>, or ReCAD-NAACOM-<span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span>) using a two-step approach combining random forest regression and linear regression. The product provides monthly <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> data at 0.25° spatial resolution from 1993 to 2021, enabling investigation of regional spatial differences, seasonal cycles, and decadal changes in <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span>. The observation-based reconstruction was trained using Surface Ocean CO<span class="inline-formula"><sub>2</sub></span> Atlas (SOCAT) observations as observational values, with various satellite-derived and reanalysis environmental variables known to control sea surface <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> as model inputs. The product shows high accuracy during the model training, validation, and independent test phases, demonstrating robustness and a capability to accurately reconstruct <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> in regions or periods lacking direct observational data. Compared with all the observation samples from SOCAT, the <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> product yields a determination coefficient of 0.92, a root-mean-square error of 12.70 <span class="inline-formula">µ</span>atm, and an accumulative uncertainty of 23.25 <span class="inline-formula">µ</span>atm. The ReCAD-NAACOM-<span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> product demonstrates its capability to resolve seasonal cycles, regional-scale variations, and decadal trends of <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> along the NAACOM. This new product provides reliable <span class="inline-formula"><i>p</i></span>CO<span class="inline-formula"><sub>2</sub></span> data for more precise studies of coastal carbon dynamics in the NAACOM region. The dataset is publicly accessible at <span class="uri">https://doi.org/10.5281/zenodo.14038561</span> (Wu et al., 2024a) and will be updated regularly.</p>https://essd.copernicus.org/articles/17/43/2025/essd-17-43-2025.pdf
spellingShingle Z. Wu
Z. Wu
W. Lu
A. Roobaert
L. Song
X.-H. Yan
W.-J. Cai
A machine-learning reconstruction of sea surface <i>p</i>CO<sub>2</sub> in the North American Atlantic Coastal Ocean Margin from 1993 to 2021
Earth System Science Data
title A machine-learning reconstruction of sea surface <i>p</i>CO<sub>2</sub> in the North American Atlantic Coastal Ocean Margin from 1993 to 2021
title_full A machine-learning reconstruction of sea surface <i>p</i>CO<sub>2</sub> in the North American Atlantic Coastal Ocean Margin from 1993 to 2021
title_fullStr A machine-learning reconstruction of sea surface <i>p</i>CO<sub>2</sub> in the North American Atlantic Coastal Ocean Margin from 1993 to 2021
title_full_unstemmed A machine-learning reconstruction of sea surface <i>p</i>CO<sub>2</sub> in the North American Atlantic Coastal Ocean Margin from 1993 to 2021
title_short A machine-learning reconstruction of sea surface <i>p</i>CO<sub>2</sub> in the North American Atlantic Coastal Ocean Margin from 1993 to 2021
title_sort machine learning reconstruction of sea surface i p i co sub 2 sub in the north american atlantic coastal ocean margin from 1993 to 2021
url https://essd.copernicus.org/articles/17/43/2025/essd-17-43-2025.pdf
work_keys_str_mv AT zwu amachinelearningreconstructionofseasurfaceipicosub2subinthenorthamericanatlanticcoastaloceanmarginfrom1993to2021
AT zwu amachinelearningreconstructionofseasurfaceipicosub2subinthenorthamericanatlanticcoastaloceanmarginfrom1993to2021
AT wlu amachinelearningreconstructionofseasurfaceipicosub2subinthenorthamericanatlanticcoastaloceanmarginfrom1993to2021
AT aroobaert amachinelearningreconstructionofseasurfaceipicosub2subinthenorthamericanatlanticcoastaloceanmarginfrom1993to2021
AT lsong amachinelearningreconstructionofseasurfaceipicosub2subinthenorthamericanatlanticcoastaloceanmarginfrom1993to2021
AT xhyan amachinelearningreconstructionofseasurfaceipicosub2subinthenorthamericanatlanticcoastaloceanmarginfrom1993to2021
AT wjcai amachinelearningreconstructionofseasurfaceipicosub2subinthenorthamericanatlanticcoastaloceanmarginfrom1993to2021
AT zwu machinelearningreconstructionofseasurfaceipicosub2subinthenorthamericanatlanticcoastaloceanmarginfrom1993to2021
AT zwu machinelearningreconstructionofseasurfaceipicosub2subinthenorthamericanatlanticcoastaloceanmarginfrom1993to2021
AT wlu machinelearningreconstructionofseasurfaceipicosub2subinthenorthamericanatlanticcoastaloceanmarginfrom1993to2021
AT aroobaert machinelearningreconstructionofseasurfaceipicosub2subinthenorthamericanatlanticcoastaloceanmarginfrom1993to2021
AT lsong machinelearningreconstructionofseasurfaceipicosub2subinthenorthamericanatlanticcoastaloceanmarginfrom1993to2021
AT xhyan machinelearningreconstructionofseasurfaceipicosub2subinthenorthamericanatlanticcoastaloceanmarginfrom1993to2021
AT wjcai machinelearningreconstructionofseasurfaceipicosub2subinthenorthamericanatlanticcoastaloceanmarginfrom1993to2021