Deterministic quantum dot cavity placement using hyperspectral imaging with high spatial accuracy and precision
Abstract Single emitters in solid state are promising sources of single and entangled photons. To boost their extraction efficiency and tailor their emission properties, they are often incorporated in photonic nanostructures. However, achieving accurate and reproducible placement inside the cavity i...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SpringerOpen
2025-07-01
|
| Series: | Nano Convergence |
| Online Access: | https://doi.org/10.1186/s40580-025-00501-5 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849331669910159360 |
|---|---|
| author | Quirin Buchinger Constantin Krause Aileen Zhang Giora Peniakov Mohamed Helal Yorick Reum Andreas Theo Pfenning Sven Höfling Tobias Huber-Loyola |
| author_facet | Quirin Buchinger Constantin Krause Aileen Zhang Giora Peniakov Mohamed Helal Yorick Reum Andreas Theo Pfenning Sven Höfling Tobias Huber-Loyola |
| author_sort | Quirin Buchinger |
| collection | DOAJ |
| description | Abstract Single emitters in solid state are promising sources of single and entangled photons. To boost their extraction efficiency and tailor their emission properties, they are often incorporated in photonic nanostructures. However, achieving accurate and reproducible placement inside the cavity is challenging but necessary to ensure the highest mode overlap and optimal device performance. For many cavity types —such as photonic crystal cavities or circular Bragg grating cavities — even small displacements lead to a significantly reduced emitter-cavity coupling. For circular Bragg grating cavities, this yields a significant reduction in Purcell effect, a slight reduction in efficiency and it introduces polarization on the emitted photons. Here we show a method to achieve high accuracy and precision for deterministically placed cavities on the example of circular Bragg gratings on randomly distributed semiconductor quantum dots. We introduce periodic alignment markers for improved marker detection accuracy and investigate overall imaging accuracy achieving (9.1 ± 2.5) nm through image correction. Since circular Bragg grating cavities exhibit a strong polarization response when the emitter is displaced, they are ideal devices to probe the cavity placement accuracy far below the diffraction limit. From the measured device polarizations, we derive a total spatial process accuracy of (33.5 ± 9.9) nm based on the raw data, and an accuracy of (15 ± 11) nm after correcting for the system response, resulting in a device yield of 68% for well-placed cavities. |
| format | Article |
| id | doaj-art-352e198383b64a989c1a19e47eeeaa18 |
| institution | Kabale University |
| issn | 2196-5404 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | SpringerOpen |
| record_format | Article |
| series | Nano Convergence |
| spelling | doaj-art-352e198383b64a989c1a19e47eeeaa182025-08-20T03:46:27ZengSpringerOpenNano Convergence2196-54042025-07-0112111010.1186/s40580-025-00501-5Deterministic quantum dot cavity placement using hyperspectral imaging with high spatial accuracy and precisionQuirin Buchinger0Constantin Krause1Aileen Zhang2Giora Peniakov3Mohamed Helal4Yorick Reum5Andreas Theo Pfenning6Sven Höfling7Tobias Huber-Loyola8Physikalisches Institut, Lehrstuhl für Technische Physik, Julius-Maximilians-Universität WürzburgPhysikalisches Institut, Lehrstuhl für Technische Physik, Julius-Maximilians-Universität WürzburgPhysikalisches Institut, Lehrstuhl für Technische Physik, Julius-Maximilians-Universität WürzburgPhysikalisches Institut, Lehrstuhl für Technische Physik, Julius-Maximilians-Universität WürzburgPhysikalisches Institut, Lehrstuhl für Technische Physik, Julius-Maximilians-Universität WürzburgPhysikalisches Institut, Lehrstuhl für Technische Physik, Julius-Maximilians-Universität WürzburgPhysikalisches Institut, Lehrstuhl für Technische Physik, Julius-Maximilians-Universität WürzburgPhysikalisches Institut, Lehrstuhl für Technische Physik, Julius-Maximilians-Universität WürzburgPhysikalisches Institut, Lehrstuhl für Technische Physik, Julius-Maximilians-Universität WürzburgAbstract Single emitters in solid state are promising sources of single and entangled photons. To boost their extraction efficiency and tailor their emission properties, they are often incorporated in photonic nanostructures. However, achieving accurate and reproducible placement inside the cavity is challenging but necessary to ensure the highest mode overlap and optimal device performance. For many cavity types —such as photonic crystal cavities or circular Bragg grating cavities — even small displacements lead to a significantly reduced emitter-cavity coupling. For circular Bragg grating cavities, this yields a significant reduction in Purcell effect, a slight reduction in efficiency and it introduces polarization on the emitted photons. Here we show a method to achieve high accuracy and precision for deterministically placed cavities on the example of circular Bragg gratings on randomly distributed semiconductor quantum dots. We introduce periodic alignment markers for improved marker detection accuracy and investigate overall imaging accuracy achieving (9.1 ± 2.5) nm through image correction. Since circular Bragg grating cavities exhibit a strong polarization response when the emitter is displaced, they are ideal devices to probe the cavity placement accuracy far below the diffraction limit. From the measured device polarizations, we derive a total spatial process accuracy of (33.5 ± 9.9) nm based on the raw data, and an accuracy of (15 ± 11) nm after correcting for the system response, resulting in a device yield of 68% for well-placed cavities.https://doi.org/10.1186/s40580-025-00501-5 |
| spellingShingle | Quirin Buchinger Constantin Krause Aileen Zhang Giora Peniakov Mohamed Helal Yorick Reum Andreas Theo Pfenning Sven Höfling Tobias Huber-Loyola Deterministic quantum dot cavity placement using hyperspectral imaging with high spatial accuracy and precision Nano Convergence |
| title | Deterministic quantum dot cavity placement using hyperspectral imaging with high spatial accuracy and precision |
| title_full | Deterministic quantum dot cavity placement using hyperspectral imaging with high spatial accuracy and precision |
| title_fullStr | Deterministic quantum dot cavity placement using hyperspectral imaging with high spatial accuracy and precision |
| title_full_unstemmed | Deterministic quantum dot cavity placement using hyperspectral imaging with high spatial accuracy and precision |
| title_short | Deterministic quantum dot cavity placement using hyperspectral imaging with high spatial accuracy and precision |
| title_sort | deterministic quantum dot cavity placement using hyperspectral imaging with high spatial accuracy and precision |
| url | https://doi.org/10.1186/s40580-025-00501-5 |
| work_keys_str_mv | AT quirinbuchinger deterministicquantumdotcavityplacementusinghyperspectralimagingwithhighspatialaccuracyandprecision AT constantinkrause deterministicquantumdotcavityplacementusinghyperspectralimagingwithhighspatialaccuracyandprecision AT aileenzhang deterministicquantumdotcavityplacementusinghyperspectralimagingwithhighspatialaccuracyandprecision AT giorapeniakov deterministicquantumdotcavityplacementusinghyperspectralimagingwithhighspatialaccuracyandprecision AT mohamedhelal deterministicquantumdotcavityplacementusinghyperspectralimagingwithhighspatialaccuracyandprecision AT yorickreum deterministicquantumdotcavityplacementusinghyperspectralimagingwithhighspatialaccuracyandprecision AT andreastheopfenning deterministicquantumdotcavityplacementusinghyperspectralimagingwithhighspatialaccuracyandprecision AT svenhofling deterministicquantumdotcavityplacementusinghyperspectralimagingwithhighspatialaccuracyandprecision AT tobiashuberloyola deterministicquantumdotcavityplacementusinghyperspectralimagingwithhighspatialaccuracyandprecision |