Microbiological Aspects and Enzymatic Characterization of <i>Curvularia kusanoi</i> L7: Ascomycete with Great Biomass Degradation Potentialities

The complex structure of the plant cell wall makes it difficult to use the biomass produced by biosynthesis. For this reason, the search for new strains of microorganisms capable of efficiently degrading fiber is a topic of interest. For these reasons, the present study aimed to evaluate both the mi...

Full description

Saved in:
Bibliographic Details
Main Authors: Maryen Alberto Vazquez, Luis Rodrigo Saa, Elaine Valiño, Livio Torta, Vito Armando Laudicina
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Journal of Fungi
Subjects:
Online Access:https://www.mdpi.com/2309-608X/10/12/807
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The complex structure of the plant cell wall makes it difficult to use the biomass produced by biosynthesis. For this reason, the search for new strains of microorganisms capable of efficiently degrading fiber is a topic of interest. For these reasons, the present study aimed to evaluate both the microbiological and enzymatic characteristics of the fungus <i>Curvularia kusanoi</i> L7strain. For this, its growth in different culture media was evaluated. Wheat straw mineralization was evaluated by gas chromatography assisted by infrared spectroscopy. The production of endo- and exoglucanase, laccase, and peroxidase enzymes in submerged solid fermentation of wheat and sugarcane bagasse were characterized. The strain efficiently mineralized raw wheat straw, showing a significant decrease in signals associated with cellulose, hemicellulose, and lignin in the infrared spectra. High enzyme productions were achieved in submerged solid fermentation of both substrates, highlighting the high production of endoglucanases in sugarcane bagasse (2.87 IU/mL) and laccases in wheat (1.64 IU/mL). It is concluded that <i>C. kusanoi</i> L7 is an ascomycete with a versatile enzyme production that allows it to exhaustively degrade complex fibers such as raw wheat straw and sugar cane bagasse, making it a microorganism with great potential in the bioconversion of plant biomass.
ISSN:2309-608X