Permutations from APN power functions over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>F</mi> <mrow> <msup> <mn>2</mn> <mrow> <mn>2</mn><mi>n</mi></mrow> </msup> </mrow> </msub> </math></inline-formula>

APN functions have the lowest differential uniform over finite fields with characteristic 2 and the APN power functions are the most classical ones.APN power functions are all 3-1 functions over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> &l...

Full description

Saved in:
Bibliographic Details
Main Author: Shi-zhu TIAN
Format: Article
Language:English
Published: POSTS&TELECOM PRESS Co., LTD 2017-10-01
Series:网络与信息安全学报
Subjects:
Online Access:http://www.cjnis.com.cn/thesisDetails#10.11959/j.issn.2096-109x.2017.00203
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841530198271459328
author Shi-zhu TIAN
author_facet Shi-zhu TIAN
author_sort Shi-zhu TIAN
collection DOAJ
description APN functions have the lowest differential uniform over finite fields with characteristic 2 and the APN power functions are the most classical ones.APN power functions are all 3-1 functions over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>F</mi> <mrow> <msup> <mn>2</mn> <mrow> <mn>2</mn><mi>n</mi></mrow> </msup> </mrow> </msub> </math></inline-formula>.By generalizing the idea of changing 2-1 functions to 1-1 functions over finite fields with odd characteristics,methods to change 3-1 functions over finite fields with even characteristics into permutations were obtained and permutations from APN power functions over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>F</mi> <mrow> <msup> <mn>2</mn> <mrow> <mn>2</mn><mi>n</mi></mrow> </msup> </mrow> </msub> </math></inline-formula> were constructed.According to the construction,the differential properties of permutations obtained by this method were discussed.
format Article
id doaj-art-32d2b1dc9ee34125be185871568bf269
institution Kabale University
issn 2096-109X
language English
publishDate 2017-10-01
publisher POSTS&TELECOM PRESS Co., LTD
record_format Article
series 网络与信息安全学报
spelling doaj-art-32d2b1dc9ee34125be185871568bf2692025-01-15T03:06:09ZengPOSTS&TELECOM PRESS Co., LTD网络与信息安全学报2096-109X2017-10-013727659551719Permutations from APN power functions over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>F</mi> <mrow> <msup> <mn>2</mn> <mrow> <mn>2</mn><mi>n</mi></mrow> </msup> </mrow> </msub> </math></inline-formula>Shi-zhu TIANAPN functions have the lowest differential uniform over finite fields with characteristic 2 and the APN power functions are the most classical ones.APN power functions are all 3-1 functions over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>F</mi> <mrow> <msup> <mn>2</mn> <mrow> <mn>2</mn><mi>n</mi></mrow> </msup> </mrow> </msub> </math></inline-formula>.By generalizing the idea of changing 2-1 functions to 1-1 functions over finite fields with odd characteristics,methods to change 3-1 functions over finite fields with even characteristics into permutations were obtained and permutations from APN power functions over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>F</mi> <mrow> <msup> <mn>2</mn> <mrow> <mn>2</mn><mi>n</mi></mrow> </msup> </mrow> </msub> </math></inline-formula> were constructed.According to the construction,the differential properties of permutations obtained by this method were discussed.http://www.cjnis.com.cn/thesisDetails#10.11959/j.issn.2096-109x.2017.00203finite fieldspermutation polynomialsAPNpower functions
spellingShingle Shi-zhu TIAN
Permutations from APN power functions over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>F</mi> <mrow> <msup> <mn>2</mn> <mrow> <mn>2</mn><mi>n</mi></mrow> </msup> </mrow> </msub> </math></inline-formula>
网络与信息安全学报
finite fields
permutation polynomials
APN
power functions
title Permutations from APN power functions over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>F</mi> <mrow> <msup> <mn>2</mn> <mrow> <mn>2</mn><mi>n</mi></mrow> </msup> </mrow> </msub> </math></inline-formula>
title_full Permutations from APN power functions over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>F</mi> <mrow> <msup> <mn>2</mn> <mrow> <mn>2</mn><mi>n</mi></mrow> </msup> </mrow> </msub> </math></inline-formula>
title_fullStr Permutations from APN power functions over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>F</mi> <mrow> <msup> <mn>2</mn> <mrow> <mn>2</mn><mi>n</mi></mrow> </msup> </mrow> </msub> </math></inline-formula>
title_full_unstemmed Permutations from APN power functions over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>F</mi> <mrow> <msup> <mn>2</mn> <mrow> <mn>2</mn><mi>n</mi></mrow> </msup> </mrow> </msub> </math></inline-formula>
title_short Permutations from APN power functions over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>F</mi> <mrow> <msup> <mn>2</mn> <mrow> <mn>2</mn><mi>n</mi></mrow> </msup> </mrow> </msub> </math></inline-formula>
title_sort permutations from apn power functions over inline formula math xmlns http www w3 org 1998 math mathml msub mi f mi mrow msup mn 2 mn mrow mn 2 mn mi n mi mrow msup mrow msub math inline formula
topic finite fields
permutation polynomials
APN
power functions
url http://www.cjnis.com.cn/thesisDetails#10.11959/j.issn.2096-109x.2017.00203
work_keys_str_mv AT shizhutian permutationsfromapnpowerfunctionsoverinlineformulamathxmlnshttpwwww3org1998mathmathmlmsubmifmimrowmsupmn2mnmrowmn2mnminmimrowmsupmrowmsubmathinlineformula