Incoherent dictionary learning and sparse representation for single-image rain removal

The incoherent dictionary learning and sparse representation algorithm was present and it was applied to single-image rain removal.The incoherence of the dictionary was introduced to design a new objective function in the dictionary learning,which addressed the problem of reducing the similarity bet...

Full description

Saved in:
Bibliographic Details
Main Authors: Hong-zhong TANG, Xiang WANG, Xiao-gang ZHANG, Xiao LI, Li-zhen MAO
Format: Article
Language:zho
Published: Editorial Department of Journal on Communications 2017-07-01
Series:Tongxin xuebao
Subjects:
Online Access:http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2017149/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The incoherent dictionary learning and sparse representation algorithm was present and it was applied to single-image rain removal.The incoherence of the dictionary was introduced to design a new objective function in the dictionary learning,which addressed the problem of reducing the similarity between rain atoms and non-rain atoms.The divisibility of rain dictionary and non-rain dictionary could be ensured.Furthermore,the learned dictionary had similar properties to the tight frame and approximates the equiangular tight frame.The high frequency in the rain image could be decomposed into a rain component and a non-rain component by performing sparse coding based learned incoherent dictionary,then the non-rain component in the high frequency and the low frequency were fused to remove rain.Experimental results demonstrate that the learned incoherent dictionary has better performance of sparse representation.The recovered rain-free image has less residual rain,and preserves effectively the edges and details.So the visual effect of recovered image is more sharpness and natural.
ISSN:1000-436X