The detection of alcohol intoxication using electrooculography signals from smart glasses and machine learning techniques

The operation of a motor vehicle under the influence of alcohol poses a significant risk to the safety of the driver, passengers, and other road users. Electrooculographic (EOG) signal analysis can be used to understand the movements and behavior of the eyes while driving. In our study, we used smar...

Full description

Saved in:
Bibliographic Details
Main Authors: Rafał J. Doniec, Natalia Piaseczna, Konrad Duraj, Szymon Sieciński, Muhammad Tausif Irshad, Ilona Karpiel, Mirella Urzeniczok, Xinyu Huang, Artur Piet, Muhammad Adeel Nisar, Marcin Grzegorzek
Format: Article
Language:English
Published: Elsevier 2024-12-01
Series:Systems and Soft Computing
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2772941924000073
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846115583145279488
author Rafał J. Doniec
Natalia Piaseczna
Konrad Duraj
Szymon Sieciński
Muhammad Tausif Irshad
Ilona Karpiel
Mirella Urzeniczok
Xinyu Huang
Artur Piet
Muhammad Adeel Nisar
Marcin Grzegorzek
author_facet Rafał J. Doniec
Natalia Piaseczna
Konrad Duraj
Szymon Sieciński
Muhammad Tausif Irshad
Ilona Karpiel
Mirella Urzeniczok
Xinyu Huang
Artur Piet
Muhammad Adeel Nisar
Marcin Grzegorzek
author_sort Rafał J. Doniec
collection DOAJ
description The operation of a motor vehicle under the influence of alcohol poses a significant risk to the safety of the driver, passengers, and other road users. Electrooculographic (EOG) signal analysis can be used to understand the movements and behavior of the eyes while driving. In our study, we used smart glasses to collect EOG data from nine participants who used a driving simulator. Their level of alcoholic intoxication was simulated by drunk vision goggles at three different levels of inebriation (0, 1, 2, and 3‰ blood alcohol content). We used machine learning algorithms (decision trees, support vector machines, nearest-neighbor classifiers, boosted trees, bagged trees, subspace discriminant classifier, subspace k nearest-neighbor classifier, and RUSBoosted Trees) to analyze the data. The Bagged Trees achieved the highest accuracy of 79%. The most important features to detect simulated alcohol intoxication were the blink rate and the velocity of the saccade, a rapid simultaneous movement of both eyes in the same direction. Our study shows the potential of using smart glasses and machine learning for the automated detection of alcohol intoxication, even when alcohol consumption is simulated.
format Article
id doaj-art-2eb2142eb5ba42f280cf63a53cb977aa
institution Kabale University
issn 2772-9419
language English
publishDate 2024-12-01
publisher Elsevier
record_format Article
series Systems and Soft Computing
spelling doaj-art-2eb2142eb5ba42f280cf63a53cb977aa2024-12-19T11:02:56ZengElsevierSystems and Soft Computing2772-94192024-12-016200078The detection of alcohol intoxication using electrooculography signals from smart glasses and machine learning techniquesRafał J. Doniec0Natalia Piaseczna1Konrad Duraj2Szymon Sieciński3Muhammad Tausif Irshad4Ilona Karpiel5Mirella Urzeniczok6Xinyu Huang7Artur Piet8Muhammad Adeel Nisar9Marcin Grzegorzek10Department of Medical Informatics and Artificial Intelligence, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, Zabrze, 41-800, PolandDepartment of Medical Informatics and Artificial Intelligence, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, Zabrze, 41-800, PolandDepartment of Medical Informatics and Artificial Intelligence, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, Zabrze, 41-800, PolandDepartment of Medical Informatics and Artificial Intelligence, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, Zabrze, 41-800, Poland; Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23562, Germany; Corresponding author at: Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23562, Germany.Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23562, Germany; Department of Information Technology, University of the Punjab, Katchery Road, Lahore, 54000, PakistanŁukasiewicz Research Network - Krakow Institute of Technology, The Centre for Biomedical Engineering, Zakopiańska 73, Kraków, 30-418, PolandŁukasiewicz Research Network - Krakow Institute of Technology, The Centre for Biomedical Engineering, Zakopiańska 73, Kraków, 30-418, PolandInstitute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23562, GermanyInstitute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23562, GermanyDepartment of Information Technology, University of the Punjab, Katchery Road, Lahore, 54000, PakistanInstitute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23562, Germany; Fraunhofer IMTE, Mönkhofer Weg 239a, Lübeck, 23562, Germany; Department of Knowledge Engineering, University of Economics in Katowice, Bogucicka 3, Katowice, 40-287, PolandThe operation of a motor vehicle under the influence of alcohol poses a significant risk to the safety of the driver, passengers, and other road users. Electrooculographic (EOG) signal analysis can be used to understand the movements and behavior of the eyes while driving. In our study, we used smart glasses to collect EOG data from nine participants who used a driving simulator. Their level of alcoholic intoxication was simulated by drunk vision goggles at three different levels of inebriation (0, 1, 2, and 3‰ blood alcohol content). We used machine learning algorithms (decision trees, support vector machines, nearest-neighbor classifiers, boosted trees, bagged trees, subspace discriminant classifier, subspace k nearest-neighbor classifier, and RUSBoosted Trees) to analyze the data. The Bagged Trees achieved the highest accuracy of 79%. The most important features to detect simulated alcohol intoxication were the blink rate and the velocity of the saccade, a rapid simultaneous movement of both eyes in the same direction. Our study shows the potential of using smart glasses and machine learning for the automated detection of alcohol intoxication, even when alcohol consumption is simulated.http://www.sciencedirect.com/science/article/pii/S2772941924000073ElectrooculographySmart glassesDrivingAlcoholHuman intoxicationMachine learning
spellingShingle Rafał J. Doniec
Natalia Piaseczna
Konrad Duraj
Szymon Sieciński
Muhammad Tausif Irshad
Ilona Karpiel
Mirella Urzeniczok
Xinyu Huang
Artur Piet
Muhammad Adeel Nisar
Marcin Grzegorzek
The detection of alcohol intoxication using electrooculography signals from smart glasses and machine learning techniques
Systems and Soft Computing
Electrooculography
Smart glasses
Driving
Alcohol
Human intoxication
Machine learning
title The detection of alcohol intoxication using electrooculography signals from smart glasses and machine learning techniques
title_full The detection of alcohol intoxication using electrooculography signals from smart glasses and machine learning techniques
title_fullStr The detection of alcohol intoxication using electrooculography signals from smart glasses and machine learning techniques
title_full_unstemmed The detection of alcohol intoxication using electrooculography signals from smart glasses and machine learning techniques
title_short The detection of alcohol intoxication using electrooculography signals from smart glasses and machine learning techniques
title_sort detection of alcohol intoxication using electrooculography signals from smart glasses and machine learning techniques
topic Electrooculography
Smart glasses
Driving
Alcohol
Human intoxication
Machine learning
url http://www.sciencedirect.com/science/article/pii/S2772941924000073
work_keys_str_mv AT rafałjdoniec thedetectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT nataliapiaseczna thedetectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT konradduraj thedetectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT szymonsiecinski thedetectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT muhammadtausifirshad thedetectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT ilonakarpiel thedetectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT mirellaurzeniczok thedetectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT xinyuhuang thedetectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT arturpiet thedetectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT muhammadadeelnisar thedetectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT marcingrzegorzek thedetectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT rafałjdoniec detectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT nataliapiaseczna detectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT konradduraj detectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT szymonsiecinski detectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT muhammadtausifirshad detectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT ilonakarpiel detectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT mirellaurzeniczok detectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT xinyuhuang detectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT arturpiet detectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT muhammadadeelnisar detectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques
AT marcingrzegorzek detectionofalcoholintoxicationusingelectrooculographysignalsfromsmartglassesandmachinelearningtechniques