Electrolyte design for reversible zinc metal chemistry

Abstract Metal anodes hold significant promise for next-generation energy storage, yet achieving highly reversible plating/stripping remains challenging due to dendrite formation and side reactions. Here we present a tailored electrolyte design to surpass 99.9% Coulombic efficiency (CE) in zinc meta...

Full description

Saved in:
Bibliographic Details
Main Authors: Bao Zhang, Jia Yao, Chao Wu, Yuanjian Li, Jia Liu, Jiaqi Wang, Tao Xiao, Tao Zhang, Daqian Cai, Jiawen Wu, Zhi Wei Seh, Shibo Xi, Hao Wang, Wei Sun, Houzhao Wan, Hong Jin Fan
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55657-1
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Metal anodes hold significant promise for next-generation energy storage, yet achieving highly reversible plating/stripping remains challenging due to dendrite formation and side reactions. Here we present a tailored electrolyte design to surpass 99.9% Coulombic efficiency (CE) in zinc metal anodes by co-engineering salts and solvents to address two critical factors: plating morphology and the anode-electrolyte interface. By integrating a dual-salt approach and organic co-solvent design, these issues can be effectively addressed. The resulting hybrid dual-salt electrolyte renders CE of 99.95% at 1 mA cm−2 at a medium concentration (3.5 m). Building upon the near-unity CE, an anode-free cell with ZnI2 cathode can stably run more than 1000 cycles under practical conditions with minimal capacity loss. Our findings provide a promising pathway for the design of reversible metal anodes, advancing metal-based battery technologies for broader energy storage applications.
ISSN:2041-1723