Comparative Evaluation of IndoBERT, IndoBERTweet, and mBERT for Multilabel Student Feedback Classification

Student feedback plays a crucial role in enhancing the quality of educational programs, yet analyzing this feedback, especially in informal contexts, remains challenging. In Indonesia, where student comments often include colloquial language and vary widely in content, effective multilabel classific...

Full description

Saved in:
Bibliographic Details
Main Authors: Fatma Indriani, Radityo Adi Nugroho, Mohammad Reza Faisal, Dwi Kartini
Format: Article
Language:English
Published: Ikatan Ahli Informatika Indonesia 2024-12-01
Series:Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Subjects:
Online Access:https://jurnal.iaii.or.id/index.php/RESTI/article/view/6100
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Student feedback plays a crucial role in enhancing the quality of educational programs, yet analyzing this feedback, especially in informal contexts, remains challenging. In Indonesia, where student comments often include colloquial language and vary widely in content, effective multilabel classification is essential to accurately identify the aspects of courses being critiqued. Despite the development of several BERT-based models, the effectiveness of these models for classifying informal Indonesian text remains underexplored. Here we evaluate the performance of three BERT variants—IndoBERT, IndoBERTweet, and mBERT—on the task of multilabel classification of student feedback. Our experiments investigate the impact of different sequence lengths and truncation strategies on model performance. We find that IndoBERTweet, with a macro F1-score of 0.8462, outperforms IndoBERT (0.8243) and mBERT (0.8230) when using a sequence length of 64 tokens and truncation at the end. These findings suggest that IndoBERTweet is well-suited for handling the informal, abbreviated text common in Indonesian student feedback, providing a robust tool for educational institutions aiming for actionable insights from student comments.
ISSN:2580-0760