GPU Ray Tracing for the Analysis of Light Deflection in Inhomogeneous Refractive Index Fields of Hot Tailored Forming Components
In hot-forming, integrating in situ quality monitoring is essential for the early detection of thermally induced geometric deviations, especially in the production of hybrid bulk metal parts. Although hybrid components are key to meeting modern technical requirements and saving resources, they exhib...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/6/1663 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In hot-forming, integrating in situ quality monitoring is essential for the early detection of thermally induced geometric deviations, especially in the production of hybrid bulk metal parts. Although hybrid components are key to meeting modern technical requirements and saving resources, they exhibit complex shrinkage behavior due to differing thermal expansion coefficients. During forming, these components are exposed to considerable temperature gradients, which result in density fluctuations in the ambient air. These fluctuations create an inhomogeneous refractive index field (IRIF), which significantly affects the accuracy of optical geometry reconstruction systems due to light deflection. This study utilizes existing simulation IRIF data to predict the magnitude and orientation of refractive index fluctuations. A light deflection simulation run on a GPU-accelerated ray tracing framework is used to assess the impact of IRIFs on optical measurements. The results of this simulation are used as a basis for selecting optimized measurement positions, reducing and quantifying uncertainties in surface reconstruction, and, therefore, improving the reliability of quality control in hot-forming applications. |
|---|---|
| ISSN: | 1424-8220 |