TG-MS Analysis of the Effect of Variations in Coal Particle Size on Combustion Characteristics and Kinetic Parameters

This study investigated the influence of particle size on combustion performance using equivalent characteristic spectrum analysis (ECSA) on a TG-MS platform. The experiments were conducted at heating rates of 10 °C/min and 20 °C/min for three granular coal types with particle sizes of 1 mm, 4 mm, a...

Full description

Saved in:
Bibliographic Details
Main Authors: Jinyang Zhang, Guoliang Song, Weijian Song, Hongliang Ding
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/6/1347
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigated the influence of particle size on combustion performance using equivalent characteristic spectrum analysis (ECSA) on a TG-MS platform. The experiments were conducted at heating rates of 10 °C/min and 20 °C/min for three granular coal types with particle sizes of 1 mm, 4 mm, and 8 mm. The results showed that the ignition temperature, burnout temperature, and burnout time generally increased with particle size, while the combustion characteristic index for the 8 mm particles was 28.81% lower than that for 1 mm particles. The particle size effects were more pronounced at lower heating rates. Combustion kinetics revealed that the pre-combustion endothermic stage had a significant impact on the ignition temperature, followed by the volatilization stage. For Shenmu bituminous coal (SBC), a 1 kJ/mol reduction in apparent activation energy during the endothermic stage increased the ignition temperature by 13.02 °C (10 °C/min) or 17.11 °C (20 °C/min). Similar trends were observed for Datong bituminous coal (DBC) and Jincheng anthracite coal (JAC). A gas product analysis indicated that the peak release temperatures rose with particle size, and particle size variations affected the maximum release rates and combustion stage duration. Smaller particles generally released less NO during combustion.
ISSN:1996-1073