Intelligent Target Detection in Synthetic Aperture Radar Images Based on Multi-Level Fusion

Due to the unique imaging mechanism of SAR, targets in SAR images present complex scattering characteristics. As a result, intelligent target detection in SAR images has been facing many challenges, which mainly lie in the insufficient exploitation of target characteristics, inefficient characteriza...

Full description

Saved in:
Bibliographic Details
Main Authors: Qiaoyu Liu, Ziqi Ye, Chenxiang Zhu, Dongxu Ouyang, Dandan Gu, Haipeng Wang
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/1/112
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the unique imaging mechanism of SAR, targets in SAR images present complex scattering characteristics. As a result, intelligent target detection in SAR images has been facing many challenges, which mainly lie in the insufficient exploitation of target characteristics, inefficient characterization of scattering features, and inadequate reliability of decision models. In this respect, we propose an intelligent target detection method based on multi-level fusion, where pixel-level, feature-level, and decision-level fusions are designed for enhancing scattering feature mining and improving the reliability of decision making. The pixel-level fusion method through the channel fusion of original images and their features after scattering feature enhancement represents an initial exploration of image fusion. Two feature-level fusion methods are conducted using respective migratable fusion blocks, namely DBAM and FDRM, presenting higher-level fusion. Decision-level fusion based on DST can not only consolidate complementary strengths in different models but also incorporate human or expert involvement in proposition for guiding effective decision making. This represents the highest-level fusion integrating results by proposition setting and statistical analysis. Experiments of different fusion methods integrating different features were conducted on typical target detection datasets. As shown in the results, the proposed method increases the mAP by 16.52%, 7.1%, and 3.19% in ship, aircraft, and vehicle target detection, demonstrating high effectiveness and robustness.
ISSN:2072-4292