Compensation of Speckle Noise in 2D Images from Triangulation Laser Profile Sensors Using Local Column Median Vectors with an Application in a Quality Control System

The main function of triangulation-based laser profile sensors—also referred to as laser profilometers or profilers—is the three-dimensional scanning of moving objects using laser triangulation. In addition to capturing 3D data, these profilometers simultaneously generate grayscale images of the sca...

Full description

Saved in:
Bibliographic Details
Main Authors: Paweł Rotter, Dawid Knapik, Maciej Klemiato, Maciej Rosół, Grzegorz Putynkowski
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/11/3426
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main function of triangulation-based laser profile sensors—also referred to as laser profilometers or profilers—is the three-dimensional scanning of moving objects using laser triangulation. In addition to capturing 3D data, these profilometers simultaneously generate grayscale images of the scanned objects. However, the quality of these images is often degraded due to interference of the laser light, manifesting as speckle noise. In profilometer images, this noise typically appears as vertical stripes. Unlike the column fixed pattern noise commonly observed in TDI CMOS cameras, the positions of these stripes are not stationary. Consequently, conventional algorithms for removing fixed pattern noise yield unsatisfactory results when applied to profilometer images. In this article, we propose an effective method for suppressing speckle noise in profilometer images of flat surfaces, based on local column median vectors. The method was evaluated across a variety of surface types and compared against existing approaches using several metrics, including the standard deviation of the column mean vector (SDCMV), frequency spectrum analysis, and standard image quality assessment measures. Our results demonstrate a substantial improvement in reducing column speckle noise: the SDCMV value achieved with our method is 2.5 to 5 times lower than that obtained using global column median values, and the root mean square (RMS) of the frequency spectrum in the noise-relevant region is reduced by nearly an order of magnitude. General image quality metrics also indicate moderate enhancement: peak signal-to-noise ratio (PSNR) increased by 2.12 dB, and the structural similarity index (SSIM) improved from 0.929 to 0.953. The primary limitation of the proposed method is its applicability only to flat surfaces. Nonetheless, we successfully implemented it in an optical inspection system for the furniture industry, where the post-processed image quality was sufficient to detect surface defects as small as 0.1 mm.
ISSN:1424-8220