Integrating Radar-Based Obstacle Detection with Deep Reinforcement Learning for Robust Autonomous Navigation

This study presents an approach to autonomous navigation for wheeled robots, combining radar-based dynamic obstacle detection with a BiGRU-based deep reinforcement learning (DRL) framework. Using filtering and tracking algorithms, the proposed system leverages radar sensors to cluster object points...

Full description

Saved in:
Bibliographic Details
Main Authors: Nabih Pico, Estrella Montero, Maykoll Vanegas, Jose Miguel Erazo Ayon, Eugene Auh, Jiyou Shin, Myeongyun Doh, Sang-Hyeon Park, Hyungpil Moon
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/1/295
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents an approach to autonomous navigation for wheeled robots, combining radar-based dynamic obstacle detection with a BiGRU-based deep reinforcement learning (DRL) framework. Using filtering and tracking algorithms, the proposed system leverages radar sensors to cluster object points and track dynamic obstacles, enhancing precision by reducing noise and fluctuations. A BiGRU-enabled DRL model is introduced, allowing the robot to process sequential environmental data and make informed decisions in dynamic and unpredictable environments, achieving collision-free paths and reaching the goal. Simulation and experimental results validate the proposed method’s efficiency and adaptability, highlighting its potential for real-world applications in dynamic scenarios.
ISSN:2076-3417