Noncommutative Wormhole Solutions in Einstein Gauss-Bonnet Gravity

We explore static spherically symmetric wormhole solutions in the framework of n-dimensional Einstein Gauss-Bonnet gravity. Our objective is to find out wormhole solutions that satisfy energy conditions. For this purpose, we consider two frameworks such as Gaussian distributed and Lorentzian distrib...

Full description

Saved in:
Bibliographic Details
Main Authors: Shamaila Rani, Abdul Jawad
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2016/7815242
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We explore static spherically symmetric wormhole solutions in the framework of n-dimensional Einstein Gauss-Bonnet gravity. Our objective is to find out wormhole solutions that satisfy energy conditions. For this purpose, we consider two frameworks such as Gaussian distributed and Lorentzian distributed noncommutative geometry. Taking into account constant redshift function, we obtain solutions in the form of shape function. The fifth and sixth dimensional solutions with positive as well as negative Gauss-Bonnet coefficient are discussed. Also, we check the equilibrium condition for the wormhole solutions with the help of generalized Tolman-Oppenheimer-Volkoff equation. It is interesting to mention here that we obtain fifth dimensional stable wormhole solutions in both distributions that satisfy the energy conditions.
ISSN:1687-7357
1687-7365