A transparent hybrid metal halide glassy scintillation screen for high-resolution fast neutron radiography
Abstract Fast neutron radiography offers exceptional penetration for high-density and bulky objects, yet its resolution is hindered by light scattering in conventional scintillators and screen fabrication techniques. To address this, here, we develop a transparent glassy Mn-based hybrid metal halide...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-61503-9 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Fast neutron radiography offers exceptional penetration for high-density and bulky objects, yet its resolution is hindered by light scattering in conventional scintillators and screen fabrication techniques. To address this, here, we develop a transparent glassy Mn-based hybrid metal halide scintillation screen, (BTPP)1.8(HTPP)0.2MnBr4 (BTPP+ = butyltriphenylphosphonium, HTPP+ = heptyltriphenylphosphonium), leveraging temperature-dependent ordered-disordered transitions. The large-area screen boasts >70% visible light transmittance (500–800 nm), a high photoluminescence quantum yield (~85.54%), and threefold higher light output than commercial ZnS (Ag): PP screens. With a spatial resolution of 5 lp mm−1, it surpasses existing scintillators. This hybrid material enables imaging of heavy objects with clear hierarchical details, providing accurate data for non-destructive detection while offering an alternative approach to scintillator design, advancing the potential of fast neutron radiography. |
|---|---|
| ISSN: | 2041-1723 |