High-Resolution Safety Verification for Evasive Obstacle Avoidance in Autonomous Vehicles

This paper presents a comprehensive hazard analysis, risk assessment, and loss evaluation for an Evasive Minimum Risk Maneuvering (EMRM) system designed for autonomous vehicles. The EMRM system is designed to improve collision avoidance and mitigate loss severity by drawing inspiration from professi...

Full description

Saved in:
Bibliographic Details
Main Authors: Aliasghar Arab, Milad Khaleghi, Alireza Partovi, Alireza Abbaspour, Chaitanya Shinde, Yashar Mousavi, Vahid Azimi, Ali Karimmoddini
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Open Journal of Vehicular Technology
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10806869/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a comprehensive hazard analysis, risk assessment, and loss evaluation for an Evasive Minimum Risk Maneuvering (EMRM) system designed for autonomous vehicles. The EMRM system is designed to improve collision avoidance and mitigate loss severity by drawing inspiration from professional drivers who perform aggressive maneuvers while maintaining stability for effective risk mitigation. Recent advances in autonomous vehicle technology demonstrate a growing capability for high-performance maneuvers. This paper discusses a comprehensive safety verification process and establishes a clear safety goal to enhance the validation of the testing. The study systematically identifies potential hazards and assesses their risks to overall safety and the protection of vulnerable road users. A novel loss evaluation approach is introduced that focuses on the impact of mitigation maneuvers on loss severity. In addition, the proposed mitigation integrity level can be used to verify the minimum-risk maneuver feature. This paper applies a verification method to evasive maneuvering, contributing to the development of more reliable active safety features in autonomous driving systems.
ISSN:2644-1330