An Analytical Computational Algorithm for Solving a System of Multipantograph DDEs Using Laplace Variational Iteration Algorithm

In this research, an approximation symbolic algorithm is suggested to obtain an approximate solution of multipantograph system of type delay differential equations (DDEs) using a combination of Laplace transform and variational iteration algorithm (VIA). The corresponding convergence results are acq...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohamed S. M. Bahgat, A. M. Sebaq
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Advances in Astronomy
Online Access:http://dx.doi.org/10.1155/2021/7741166
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this research, an approximation symbolic algorithm is suggested to obtain an approximate solution of multipantograph system of type delay differential equations (DDEs) using a combination of Laplace transform and variational iteration algorithm (VIA). The corresponding convergence results are acquired, and an efficient algorithm for choosing a feasible Lagrange multiplier is designed in the solving process. The application of the Laplace variational iteration algorithm (LVIA) for the problems is clarified. With graphics and tables, LVIA approximates to a high degree of accuracy with a few numbers of iterates. Also, computational results of the considered examples imply that LVIA is accurate, simple, and appropriate for solving a system of multipantograph delay differential equations (SMPDDEs).
ISSN:1687-7969
1687-7977