Core Payload of the Space Gravitational Wave Observatory: Inertial Sensor and Its Critical Technologies

Since Einstein’s prediction regarding the existence of gravitational waves was directly verified by the ground-based detector Advanced LIGO, research on gravitational wave detection has garnered increasing attention. To overcome limitations imposed by ground vibrations and interference at arm’s leng...

Full description

Saved in:
Bibliographic Details
Main Authors: Shaoxin Wang, Dongxu Liu, Xuan Zhan, Peng Dong, Jia Shen, Juan Wang, Ruihong Gao, Weichuan Guo, Peng Xu, Keqi Qi, Ziren Luo
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/24/23/7685
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Since Einstein’s prediction regarding the existence of gravitational waves was directly verified by the ground-based detector Advanced LIGO, research on gravitational wave detection has garnered increasing attention. To overcome limitations imposed by ground vibrations and interference at arm’s length, a space-based gravitational wave detection initiative was proposed, which focuses on analyzing a large number of waves within the frequency range below 1 Hz. Due to the weak signal intensity, the TMs must move along their geodesic orbit with a residual acceleration less than 10<sup>−15</sup> m/s<sup>2</sup>/Hz<sup>1/2</sup>. Consequently, the core payload-inertial sensor was designed to shield against stray force noise while maintaining the high-precision motion of the test mass through a drag-free control system, providing an ultra-stable inertial reference for laser interferometry. To meet these requirements, the inertial sensor integrates a series of unit settings and innovative designs, involving numerous subsystems and technologies. This article provides a comprehensive overview of these critical technologies used in the development of inertial sensors for space gravitational wave detection and discusses future trends and potential applications for these sensors.
ISSN:1424-8220