On the weak uniform rotundity of Banach spaces
We prove that if Xi,i=1,2,…, are Banach spaces that are weak* uniformly rotund, then their lp product space (p>1) is weak* uniformly rotund, and for any weak or weak* uniformly rotund Banach space, its quotient space is also weak or weak* uniformly rotund, respectively.
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2003-01-01
|
| Series: | International Journal of Mathematics and Mathematical Sciences |
| Online Access: | http://dx.doi.org/10.1155/S0161171203206359 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We prove that if Xi,i=1,2,…, are Banach spaces that are weak* uniformly rotund, then their lp product space (p>1) is weak* uniformly rotund, and for any weak or weak* uniformly rotund Banach space, its quotient space is also weak or weak* uniformly rotund, respectively. |
|---|---|
| ISSN: | 0161-1712 1687-0425 |