SineKAN: Kolmogorov-Arnold Networks using sinusoidal activation functions
Recent work has established an alternative to traditional multi-layer perceptron neural networks in the form of Kolmogorov-Arnold Networks (KAN). The general KAN framework uses learnable activation functions on the edges of the computational graph followed by summation on nodes. The learnable edge a...
Saved in:
Main Authors: | Eric Reinhardt, Dinesh Ramakrishnan, Sergei Gleyzer |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2025-01-01
|
Series: | Frontiers in Artificial Intelligence |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/frai.2024.1462952/full |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Physics-Informed Kolmogorov-Arnold Networks for Power System Dynamics
by: Hang Shuai, et al.
Published: (2025-01-01) -
Classifying IoT Botnet Attacks With Kolmogorov-Arnold Networks: A Comparative Analysis of Architectural Variations
by: Phuc Hao do, et al.
Published: (2025-01-01) -
An intrusion detection model based on Convolutional Kolmogorov-Arnold Networks
by: Zhen Wang, et al.
Published: (2025-01-01) -
On the use of kolmogorov–arnold networks for adapting wind numerical weather forecasts with explainability and interpretability: application to madeira international airport
by: Décio Alves, et al.
Published: (2024-01-01) -
Research on a Novel Unsupervised-Learning-Based Pipeline Leak Detection Method Based on Temporal Kolmogorov–Arnold Network with Autoencoder Integration
by: Hengyu Wu, et al.
Published: (2025-01-01)