Influence of Bamboo Cellulose Coating on the Flux Performance of Polyvinylidene Fluoride Hollow Fiber Membrane
This study showcases the characterization of a surface modified polyvinylidene fluoride (PVDF) hollow fiber membrane via Cellulose/PVDF coating. Scanning electron microscopy shows evidence of Cellulose/PVDF coating where surface roughness and coating lines with cracking is visible. The rough surface...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
North Carolina State University
2025-08-01
|
| Series: | BioResources |
| Subjects: | |
| Online Access: | https://ojs.bioresources.com/index.php/BRJ/article/view/24882 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study showcases the characterization of a surface modified polyvinylidene fluoride (PVDF) hollow fiber membrane via Cellulose/PVDF coating. Scanning electron microscopy shows evidence of Cellulose/PVDF coating where surface roughness and coating lines with cracking is visible. The rough surface correlates with an improved pure water flux. However, the presence of surface cracks and higher cellulose loading results in decreased flux. Fourier transform infrared spectroscopy shows evidence of cellulose on the coated membrane. X-Ray diffraction revealed amorphous phase on the surface of the coated membrane, indicating that coated membrane has improved hydrophilic properties. The coated membrane samples have improved pure water flux performance up to 3 times the value from control (157.8864 L/m2/h/bar) for samples P01 (432.9142 L/m2/h/bar) and P02 (483.8453 L/m2/h/bar) which is the best performing membrane. The porosity and mean pore size correlate with the pure water flux as increase in porosity with increased mean pore size enables better permeability. However, the increased porosity with decreased mean pore size causes a clogging effect which may be attributed to the swelling of the membrane when in contact with the pure water. Overall, the cellulose/PVDF coating modifies the surface properties by developing a rough and porous hydrophilic layer. It enables better performance for the hydrophobic PVDF hollow fiber membrane. |
|---|---|
| ISSN: | 1930-2126 |