Non-singular anisotropic solutions for strange star model in $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory

Abstract This article focuses on different anisotropic models within the framework of a specific modified $$f(\mathcal {R},\mathcal {T}, \mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory. The study adopts a static spherically symmetric spacetime to...

Full description

Saved in:
Bibliographic Details
Main Authors: Yihu Feng, Tayyab Naseer, G. Mustafa, S. K. Maurya
Format: Article
Language:English
Published: SpringerOpen 2025-01-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-024-13716-3
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841544337555456000
author Yihu Feng
Tayyab Naseer
G. Mustafa
S. K. Maurya
author_facet Yihu Feng
Tayyab Naseer
G. Mustafa
S. K. Maurya
author_sort Yihu Feng
collection DOAJ
description Abstract This article focuses on different anisotropic models within the framework of a specific modified $$f(\mathcal {R},\mathcal {T}, \mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory. The study adopts a static spherically symmetric spacetime to determine the field equations for two different modified models: (i) $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })=\mathcal {R}+\eta \mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma }$$ f ( R , T , R ζ γ T ζ γ ) = R + η R ζ γ T ζ γ , and (ii) $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })=\mathcal {R}(1+\eta \mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) = R ( 1 + η R ζ γ T ζ γ ) , where $$\eta $$ η is a constant parameter. To address the additional degrees of freedom in the field equations and obtain their corresponding unique solution, the Durgapal-Fuloria spacetime geometry and MIT bag model are utilized. Matching conditions are applied to determine unknown constants within the chosen spacetime geometry. We adopt a certain range of model parameters to analyze the physical characteristics of the developed models in the interior distribution of a particular compact star candidate 4U 1820-30. Energy conditions and some other tests are also implemented to ensure their viability and stability. Additionally, the disappearing radial pressure constraint is employed to find the values of the model parameter, aligning with the observed information of an array of stars. The study concludes that both of our models are well-behaved and satisfy all necessary conditions, and thus we observe them suitable for the modeling of astrophysical objects.
format Article
id doaj-art-19ed4d9a38b647919a47223db25e7b7d
institution Kabale University
issn 1434-6052
language English
publishDate 2025-01-01
publisher SpringerOpen
record_format Article
series European Physical Journal C: Particles and Fields
spelling doaj-art-19ed4d9a38b647919a47223db25e7b7d2025-01-12T12:36:54ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60522025-01-0185112210.1140/epjc/s10052-024-13716-3Non-singular anisotropic solutions for strange star model in $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theoryYihu Feng0Tayyab Naseer1G. Mustafa2S. K. Maurya3Department of Electronics and Information Engineering, Bozhou UniversityDepartment of Mathematics and Statistics, The University of LahoreDepartment of Physics, Zhejiang Normal UniversityDepartment of Mathematical and Physical Sciences, College of Arts and Sciences, University of NizwaAbstract This article focuses on different anisotropic models within the framework of a specific modified $$f(\mathcal {R},\mathcal {T}, \mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory. The study adopts a static spherically symmetric spacetime to determine the field equations for two different modified models: (i) $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })=\mathcal {R}+\eta \mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma }$$ f ( R , T , R ζ γ T ζ γ ) = R + η R ζ γ T ζ γ , and (ii) $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })=\mathcal {R}(1+\eta \mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) = R ( 1 + η R ζ γ T ζ γ ) , where $$\eta $$ η is a constant parameter. To address the additional degrees of freedom in the field equations and obtain their corresponding unique solution, the Durgapal-Fuloria spacetime geometry and MIT bag model are utilized. Matching conditions are applied to determine unknown constants within the chosen spacetime geometry. We adopt a certain range of model parameters to analyze the physical characteristics of the developed models in the interior distribution of a particular compact star candidate 4U 1820-30. Energy conditions and some other tests are also implemented to ensure their viability and stability. Additionally, the disappearing radial pressure constraint is employed to find the values of the model parameter, aligning with the observed information of an array of stars. The study concludes that both of our models are well-behaved and satisfy all necessary conditions, and thus we observe them suitable for the modeling of astrophysical objects.https://doi.org/10.1140/epjc/s10052-024-13716-3
spellingShingle Yihu Feng
Tayyab Naseer
G. Mustafa
S. K. Maurya
Non-singular anisotropic solutions for strange star model in $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory
European Physical Journal C: Particles and Fields
title Non-singular anisotropic solutions for strange star model in $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory
title_full Non-singular anisotropic solutions for strange star model in $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory
title_fullStr Non-singular anisotropic solutions for strange star model in $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory
title_full_unstemmed Non-singular anisotropic solutions for strange star model in $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory
title_short Non-singular anisotropic solutions for strange star model in $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory
title_sort non singular anisotropic solutions for strange star model in f mathcal r mathcal t mathcal r zeta gamma mathcal t zeta gamma f r t r ζ γ t ζ γ gravity theory
url https://doi.org/10.1140/epjc/s10052-024-13716-3
work_keys_str_mv AT yihufeng nonsingularanisotropicsolutionsforstrangestarmodelinfmathcalrmathcaltmathcalrzetagammamathcaltzetagammafrtrzgtzggravitytheory
AT tayyabnaseer nonsingularanisotropicsolutionsforstrangestarmodelinfmathcalrmathcaltmathcalrzetagammamathcaltzetagammafrtrzgtzggravitytheory
AT gmustafa nonsingularanisotropicsolutionsforstrangestarmodelinfmathcalrmathcaltmathcalrzetagammamathcaltzetagammafrtrzgtzggravitytheory
AT skmaurya nonsingularanisotropicsolutionsforstrangestarmodelinfmathcalrmathcaltmathcalrzetagammamathcaltzetagammafrtrzgtzggravitytheory