Non-singular anisotropic solutions for strange star model in $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory
Abstract This article focuses on different anisotropic models within the framework of a specific modified $$f(\mathcal {R},\mathcal {T}, \mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory. The study adopts a static spherically symmetric spacetime to...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2025-01-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | https://doi.org/10.1140/epjc/s10052-024-13716-3 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841544337555456000 |
---|---|
author | Yihu Feng Tayyab Naseer G. Mustafa S. K. Maurya |
author_facet | Yihu Feng Tayyab Naseer G. Mustafa S. K. Maurya |
author_sort | Yihu Feng |
collection | DOAJ |
description | Abstract This article focuses on different anisotropic models within the framework of a specific modified $$f(\mathcal {R},\mathcal {T}, \mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory. The study adopts a static spherically symmetric spacetime to determine the field equations for two different modified models: (i) $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })=\mathcal {R}+\eta \mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma }$$ f ( R , T , R ζ γ T ζ γ ) = R + η R ζ γ T ζ γ , and (ii) $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })=\mathcal {R}(1+\eta \mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) = R ( 1 + η R ζ γ T ζ γ ) , where $$\eta $$ η is a constant parameter. To address the additional degrees of freedom in the field equations and obtain their corresponding unique solution, the Durgapal-Fuloria spacetime geometry and MIT bag model are utilized. Matching conditions are applied to determine unknown constants within the chosen spacetime geometry. We adopt a certain range of model parameters to analyze the physical characteristics of the developed models in the interior distribution of a particular compact star candidate 4U 1820-30. Energy conditions and some other tests are also implemented to ensure their viability and stability. Additionally, the disappearing radial pressure constraint is employed to find the values of the model parameter, aligning with the observed information of an array of stars. The study concludes that both of our models are well-behaved and satisfy all necessary conditions, and thus we observe them suitable for the modeling of astrophysical objects. |
format | Article |
id | doaj-art-19ed4d9a38b647919a47223db25e7b7d |
institution | Kabale University |
issn | 1434-6052 |
language | English |
publishDate | 2025-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | European Physical Journal C: Particles and Fields |
spelling | doaj-art-19ed4d9a38b647919a47223db25e7b7d2025-01-12T12:36:54ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60522025-01-0185112210.1140/epjc/s10052-024-13716-3Non-singular anisotropic solutions for strange star model in $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theoryYihu Feng0Tayyab Naseer1G. Mustafa2S. K. Maurya3Department of Electronics and Information Engineering, Bozhou UniversityDepartment of Mathematics and Statistics, The University of LahoreDepartment of Physics, Zhejiang Normal UniversityDepartment of Mathematical and Physical Sciences, College of Arts and Sciences, University of NizwaAbstract This article focuses on different anisotropic models within the framework of a specific modified $$f(\mathcal {R},\mathcal {T}, \mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory. The study adopts a static spherically symmetric spacetime to determine the field equations for two different modified models: (i) $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })=\mathcal {R}+\eta \mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma }$$ f ( R , T , R ζ γ T ζ γ ) = R + η R ζ γ T ζ γ , and (ii) $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })=\mathcal {R}(1+\eta \mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) = R ( 1 + η R ζ γ T ζ γ ) , where $$\eta $$ η is a constant parameter. To address the additional degrees of freedom in the field equations and obtain their corresponding unique solution, the Durgapal-Fuloria spacetime geometry and MIT bag model are utilized. Matching conditions are applied to determine unknown constants within the chosen spacetime geometry. We adopt a certain range of model parameters to analyze the physical characteristics of the developed models in the interior distribution of a particular compact star candidate 4U 1820-30. Energy conditions and some other tests are also implemented to ensure their viability and stability. Additionally, the disappearing radial pressure constraint is employed to find the values of the model parameter, aligning with the observed information of an array of stars. The study concludes that both of our models are well-behaved and satisfy all necessary conditions, and thus we observe them suitable for the modeling of astrophysical objects.https://doi.org/10.1140/epjc/s10052-024-13716-3 |
spellingShingle | Yihu Feng Tayyab Naseer G. Mustafa S. K. Maurya Non-singular anisotropic solutions for strange star model in $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory European Physical Journal C: Particles and Fields |
title | Non-singular anisotropic solutions for strange star model in $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory |
title_full | Non-singular anisotropic solutions for strange star model in $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory |
title_fullStr | Non-singular anisotropic solutions for strange star model in $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory |
title_full_unstemmed | Non-singular anisotropic solutions for strange star model in $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory |
title_short | Non-singular anisotropic solutions for strange star model in $$f(\mathcal {R},\mathcal {T},\mathcal {R}_{\zeta \gamma }\mathcal {T}^{\zeta \gamma })$$ f ( R , T , R ζ γ T ζ γ ) gravity theory |
title_sort | non singular anisotropic solutions for strange star model in f mathcal r mathcal t mathcal r zeta gamma mathcal t zeta gamma f r t r ζ γ t ζ γ gravity theory |
url | https://doi.org/10.1140/epjc/s10052-024-13716-3 |
work_keys_str_mv | AT yihufeng nonsingularanisotropicsolutionsforstrangestarmodelinfmathcalrmathcaltmathcalrzetagammamathcaltzetagammafrtrzgtzggravitytheory AT tayyabnaseer nonsingularanisotropicsolutionsforstrangestarmodelinfmathcalrmathcaltmathcalrzetagammamathcaltzetagammafrtrzgtzggravitytheory AT gmustafa nonsingularanisotropicsolutionsforstrangestarmodelinfmathcalrmathcaltmathcalrzetagammamathcaltzetagammafrtrzgtzggravitytheory AT skmaurya nonsingularanisotropicsolutionsforstrangestarmodelinfmathcalrmathcaltmathcalrzetagammamathcaltzetagammafrtrzgtzggravitytheory |