Adversarial examples detection method based on boundary values invariants

Nowadays,deep learning has become one of the most widely studied and applied technologies in the computer field.Deep neural networks(DNNs) have achieved greatly noticeable success in many applications such as image recognition,speech,self-driving and text translation.However,deep neural networks are...

Full description

Saved in:
Bibliographic Details
Main Authors: Fei YAN, Minglun ZHANG, Liqiang ZHANG
Format: Article
Language:English
Published: POSTS&TELECOM PRESS Co., LTD 2020-02-01
Series:网络与信息安全学报
Subjects:
Online Access:http://www.cjnis.com.cn/thesisDetails#10.11959/j.issn.2096-109x.2020012
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nowadays,deep learning has become one of the most widely studied and applied technologies in the computer field.Deep neural networks(DNNs) have achieved greatly noticeable success in many applications such as image recognition,speech,self-driving and text translation.However,deep neural networks are vulnerable to adversarial examples that are generated by perturbing correctly classified inputs to cause DNN modes to misbehave.A boundary check method based on traditional programs by fitting the distribution to find the invariants in the deep neural network was proposed and it use the invariants to detect adversarial examples.The selection of training sets was irrelevant to adversarial examples.The experiment results show that proposed method can effectively detect the current adversarial example attacks on LeNet,vgg19 model,Mnist,Cifar10 dataset,and has a low false positive rate.
ISSN:2096-109X