Ga@MXene-based flexible wearable biosensor for glucose monitoring in sweat
Summary: Most wearable biosensors struggle to balance flexibility and conductivity in their sensing interfaces. In this study, we propose a wearable sensor featuring a highly stretchable, three-dimensional conductive network structure based on liquid metal. The sensor interface utilizes a patterned...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-02-01
|
| Series: | iScience |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S258900422402964X |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Summary: Most wearable biosensors struggle to balance flexibility and conductivity in their sensing interfaces. In this study, we propose a wearable sensor featuring a highly stretchable, three-dimensional conductive network structure based on liquid metal. The sensor interface utilizes a patterned Ga@MXene hydrogel system, where gallium (Ga) grafted onto MXene provides enhanced electrical conductivity and malleability. MXene provides excellent conductivity and a three-dimensional layered structure. Additionally, the chitosan (CS) hydrogel, with its superior water absorption and stretchability, allows the electrode to retain sweat and closely stick to the skin. The sensor demonstrates a low limit of detection (0.77 μM), high sensitivity (1.122 μA⋅μM⁻1⋅cm⁻2), and a broad detection range (10–1,000 μM), meeting the requirements for a wide range of applications. Notably, the sensor can also induce perspiration in the wearer. The three-dimensional porous structure of the Ga@MXene/CS biosensor ensures excellent conductivity and flexibility, making it suitable for a variety of applications. |
|---|---|
| ISSN: | 2589-0042 |