Modulatory role of radioprotective 105 in mitigating oxidative stress and ferroptosis via the HO-1/SLC7A11/GPX4 axis in sepsis-mediated renal injury
Abstract Sepsis-associated acute kidney injury (SA-AKI) is a critical condition characterized by high morbidity and mortality rates, particularly in intensive care settings. This study focuses on RP105, a pattern recognition receptor, exploring its role in moderating the mechanisms of oxidative stre...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Publishing Group
2025-07-01
|
| Series: | Cell Death Discovery |
| Online Access: | https://doi.org/10.1038/s41420-025-02578-7 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Sepsis-associated acute kidney injury (SA-AKI) is a critical condition characterized by high morbidity and mortality rates, particularly in intensive care settings. This study focuses on RP105, a pattern recognition receptor, exploring its role in moderating the mechanisms of oxidative stress and ferroptosis during SA-AKI, offering insights into its potential as a therapeutic target. SA-AKI model was established using RP105 knockout (KO) and wild-type (WT) mice through cecal ligation and puncture (CLP). Comprehensive evaluations included the assessment of ferroptosis markers and the expression levels of pro-inflammatory cytokines. RP105 expression was markedly reduced in the kidneys following CLP induction, correlating with worsened renal outcomes. Compared to the Sham group, RP105−/− mice displayed heightened renal damage, increased levels of oxidative stress markers, and enhanced lipid peroxidation. Notably, the deficiency of RP105 led to increased macrophage infiltration and a shift towards pro-inflammatory phenotypes, which further potentiated ferroptosis and exacerbated renal tissue damage. By influencing macrophage behavior and mitigating inflammatory responses. RP105 deficiency exacerbates macrophage-induced inflammation, oxidative stress, and ferroptosis, forming a vicious cycle that leads to more severe renal injury. These findings underscore the pivotal role of RP105 in mitigating oxidative stress and suppressing ferroptosis in the context of SA-AKI through regulation of the HO-1/SLC7A11/GPX4 axis. By preventing macrophage polarization toward a pro-inflammatory phenotype, RP105 alleviates inflammatory responses and tissue damage, highlighting its potential as a therapeutic target. Thus, RP105 emerges as a promising therapeutic candidate for mitigating sepsis-induced renal damage. |
|---|---|
| ISSN: | 2058-7716 |