Research on inner membrane complex protein 1: a novel nanovaccines against Toxoplasma gondii
Abstract Toxoplasma gondii (T. gondii) is a globally prevalent zoonotic parasite causing severe health and economic impacts. Despite decades of research, no commercial vaccine provides comprehensive protection against both acute and chronic toxoplasmosis. DNA vaccines represent a promising strategy,...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
BMC
2025-08-01
|
| Series: | BMC Veterinary Research |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s12917-025-04961-z |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Toxoplasma gondii (T. gondii) is a globally prevalent zoonotic parasite causing severe health and economic impacts. Despite decades of research, no commercial vaccine provides comprehensive protection against both acute and chronic toxoplasmosis. DNA vaccines represent a promising strategy, but their application is hindered by low delivery efficiency and limited immunogenicity. Here, we developed and evaluated pVAX1-TgIMC1-loaded PLGA and chitosan (CS) nanospheres as potential vaccine candidates. Immunization studies in mice showed that pVAX1-TgIMC1/PLGA and pVAX1-TgIMC1/CS nanospheres induced robust humoral and cellular immune responses, significantly enhancing specific IgG levels and cytokine production IFN-γ and IL-17 compared to the naked DNA vaccine. Both nanospheres also promoted dendritic cell maturation and T-cell activation, resulting in reduced parasite burdens in cardiac tissues post-challenge. Notably, the PLGA nanospheres exhibited superior protection against acute toxoplasmosis, while CS nanospheres provided additional advantages in antigen stability and delivery. The nanospheres were non-toxic, as confirmed by biochemical markers and histopathological analysis. These findings highlight pVAX1-TgIMC1/PLGA and pVAX1-TgIMC1/CS nanospheres as promising candidates for T. gondii vaccine development, warranting further optimization and validation in broader animal models. |
|---|---|
| ISSN: | 1746-6148 |