SE-ResUNet Using Feature Combinations: A Deep Learning Framework for Accurate Mountainous Cropland Extraction Using Multi-Source Remote Sensing Data

The accurate extraction of mountainous cropland from remote sensing images remains challenging due to its fragmented plots, irregular shapes, and the terrain-induced shadows. To address this, we propose a deep learning framework, SE-ResUNet, that integrates Squeeze-and-Excitation (SE) modules into R...

Full description

Saved in:
Bibliographic Details
Main Authors: Ling Xiao, Jiasheng Wang, Kun Yang, Hui Zhou, Qianwen Meng, Yue He, Siyi Shen
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Land
Subjects:
Online Access:https://www.mdpi.com/2073-445X/14/5/937
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The accurate extraction of mountainous cropland from remote sensing images remains challenging due to its fragmented plots, irregular shapes, and the terrain-induced shadows. To address this, we propose a deep learning framework, SE-ResUNet, that integrates Squeeze-and-Excitation (SE) modules into ResUNet to enhance feature representation. Leveraging Sentinel-1/2 imagery and DEM data, we fuse vegetation indices (NDVI/EVI), terrain features (Slope/TRI), and SAR polarization characteristics into 3-channel inputs, optimizing the network’s discriminative capacity. Comparative experiments on network architectures, feature combinations, and terrain conditions demonstrated the superiority of our approach. The results showed the following: (1) feature fusion (NDVI + TerrainIndex + SAR) had the best performance (OA: 97.11%; F1-score: 96.41%; IoU: 93.06%), significantly reducing shadow/cloud interference. (2) SE-ResUNet outperformed ResUNet by 3.53% for OA and 8.09% for IoU, emphasizing its ability to recalibrate channel-wise features and refine edge details. (3) The model exhibited robustness across diverse slopes/aspects (OA > 93.5%), mitigating terrain-induced misclassifications. This study provides a scalable solution for mountainous cropland mapping, supporting precision agriculture and sustainable land management.
ISSN:2073-445X