Experimental Mode-Pairing Quantum Key Distribution Surpassing the Repeaterless Bound

Quantum key distribution (QKD) provides information-theoretic security for communication. The mode-pairing (MP) protocol emerges as a promising solution for long-distance QKD by eliminating the need for a global phase reference while maintaining the repeaterlike rate-loss scaling. Recent implementat...

Full description

Saved in:
Bibliographic Details
Main Authors: Likang Zhang, Wei Li, Jiawei Pan, Yichen Lu, Wenwen Li, Zheng-Ping Li, Yizhi Huang, Xiongfeng Ma, Feihu Xu, Jian-Wei Pan
Format: Article
Language:English
Published: American Physical Society 2025-05-01
Series:Physical Review X
Online Access:http://doi.org/10.1103/PhysRevX.15.021037
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantum key distribution (QKD) provides information-theoretic security for communication. The mode-pairing (MP) protocol emerges as a promising solution for long-distance QKD by eliminating the need for a global phase reference while maintaining the repeaterlike rate-loss scaling. Recent implementations have demonstrated its potential, but they either rely on costly ultrastable lasers or struggle with phase fluctuations from commercial lasers, particularly over long distances. As a result, surpassing the repeaterless bound with a practical system remains a challenge. In this work, we demonstrate a practical high-performance MP-QKD system using commercial lasers. To address phase fluctuations, we propose a frequency-tracking scheme based on fast Fourier transformation, enabling us to extend the pairing length to 2×10^{5} pulses (160  μs). We propose a model to carefully analyze the phase noise and optimize the system parameters. Our system achieves an optimal secret key rate of 47.8  bit/s over 403 km of standard fiber (76.5 dB loss), exceeding the repeaterless bound by a factor of 2.92. Furthermore, we compare MP-QKD and twin-field QKD under various practical conditions and clarify the distinct application scenarios of the two protocols. These results confirm the feasibility of MP-QKD using cost-effective commercial technologies, paving the way for scalable quantum communication networks.
ISSN:2160-3308