Toughening epoxy resins with soluble hyperbranched poly (aryl ether ketone): enhanced mechanical properties and thermal stability
The limited toughness of epoxy resins (EP) significantly hinders their application. While hyperbranched polymers are commonly employed as toughening agents, their poor solubility often leads to drawbacks, including a marked reduction in glass transition temperature (Tg). In this study, a novel hyper...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2025-12-01
|
Series: | Advanced Manufacturing: Polymer & Composites Science |
Subjects: | |
Online Access: | https://www.tandfonline.com/doi/10.1080/20550340.2024.2447171 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The limited toughness of epoxy resins (EP) significantly hinders their application. While hyperbranched polymers are commonly employed as toughening agents, their poor solubility often leads to drawbacks, including a marked reduction in glass transition temperature (Tg). In this study, a novel hyperbranched poly (aryl ether ketone) resin (pm-HBPAEK-OH) with enhanced solubility was synthesized and evaluated as a toughening agent, for EP. The results indicated that when the content of pm-HBPAEK-OH is 6%, the tensile strength, flexural strength, impact strength, and elongation at break reached 75.1 MPa, 113.8 MPa, 43.5 kJ/m2, and 11.3%, respectively, representing enhancements of 10.0%, 13.1%, 112.9%, and 195.0% compared to the pure EP. Additionally, the modified EP exhibited superior thermal stability achieving a Tg of 91.6 °C, which is approximately 15.4 °C higher than that of pure EP, without a significant loss in thermal decomposition temperature. |
---|---|
ISSN: | 2055-0340 2055-0359 |