Whole examination AI estimation of fetal biometrics from 20-week ultrasound scans

Abstract The current approach to fetal anomaly screening is based on biometric measurements derived from individually selected ultrasound images. In this paper, we introduce a paradigm shift that attains human-level performance in biometric measurement by aggregating automatically extracted biometri...

Full description

Saved in:
Bibliographic Details
Main Authors: Lorenzo Venturini, Samuel Budd, Alfonso Farruggia, Robert Wright, Jacqueline Matthew, Thomas G. Day, Bernhard Kainz, Reza Razavi, Jo V. Hajnal
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:npj Digital Medicine
Online Access:https://doi.org/10.1038/s41746-024-01406-z
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The current approach to fetal anomaly screening is based on biometric measurements derived from individually selected ultrasound images. In this paper, we introduce a paradigm shift that attains human-level performance in biometric measurement by aggregating automatically extracted biometrics from every frame across an entire scan, with no need for operator intervention. We use a neural network to classify each frame of an ultrasound video recording. We then measure fetal biometrics in every frame where appropriate anatomy is visible. We use a Bayesian method to estimate the true value of each biometric from a large number of measurements and probabilistically reject outliers. We performed a retrospective experiment on 1457 recordings (comprising 48 million frames) of 20-week ultrasound scans, estimated fetal biometrics in those scans and compared our estimates to real-time manual measurements. Our method achieves human-level performance in estimating fetal biometrics and estimates well-calibrated credible intervals for the true biometric value.
ISSN:2398-6352