A network-based approach to overcome BCR::ABL1-independent resistance in chronic myeloid leukemia
Abstract Background About 40% of relapsed or non-responder tumors exhibit therapeutic resistance in the absence of a clear genetic cause, suggesting a pivotal role of intracellular communication. A deeper understanding of signaling pathways rewiring occurring in resistant cells is crucial to propose...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
BMC
2025-04-01
|
| Series: | Cell Communication and Signaling |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s12964-025-02185-0 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Background About 40% of relapsed or non-responder tumors exhibit therapeutic resistance in the absence of a clear genetic cause, suggesting a pivotal role of intracellular communication. A deeper understanding of signaling pathways rewiring occurring in resistant cells is crucial to propose alternative effective strategies for cancer patients. Methods To achieve this goal, we developed a novel multi-step strategy, which integrates high sensitive mass spectrometry-based phosphoproteomics with network-based analysis. This strategy builds context-specific networks recapitulating the signaling rewiring upon drug treatment in therapy-resistant and sensitive cells. Results We applied this strategy to elucidate the BCR::ABL1-independent mechanisms that drive relapse upon therapy discontinuation in chronic myeloid leukemia (CML) patients. We built a signaling map, detailing - from receptor to key phenotypes - the molecular mechanisms implicated in the control of proliferation, DNA damage response and inflammation of therapy-resistant cells. In-depth analysis of this map uncovered novel therapeutic vulnerabilities. Functional validation in patient-derived leukemic stem cells revealed a crucial role of acquired FLT3-dependency and its underlying molecular mechanism. Conclusions In conclusion, our study presents a novel generally applicable strategy and the reposition of FLT3, one of the most frequently mutated drivers of acute leukemia, as a potential therapeutic target for CML relapsed patients. |
|---|---|
| ISSN: | 1478-811X |