Spectral properties of Levy Rosenzweig-Porter model via supersymmetric approach
By using the Efetov's super-symmetric formalism we computed analytically the mean spectral density $\rho(E)$ for the Lévy and the Lévy -Rosenzweig-Porter random matrices which off-diagonal elements are strongly non-Gaussian with power-law tails. This makes the standard Hubbard-Stratonovich tran...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SciPost
2025-01-01
|
Series: | SciPost Physics |
Online Access: | https://scipost.org/SciPostPhys.18.1.010 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | By using the Efetov's super-symmetric formalism we computed analytically the mean spectral density $\rho(E)$ for the Lévy and the Lévy -Rosenzweig-Porter random matrices which off-diagonal elements are strongly non-Gaussian with power-law tails. This makes the standard Hubbard-Stratonovich transformation inapplicable to such problems. We used, instead, the functional Hubbard-Stratonovich transformation which allowed to solve the problem analytically for large sizes of matrices. We show that $\rho(E)$ depends crucially on the control parameter that drives the system through the transition between the ergodic and the fractal phases and it can be used as an order parameter. |
---|---|
ISSN: | 2542-4653 |