Search alternatives:
improved » improve (Expand Search)
Showing 221 - 240 results of 255 for search 'improved root optimization algorithm', query time: 0.10s Refine Results
  1. 221

    Fuzzy logic-based simulation of a weighted integrated GNSS receiver for mitigating blocking interference effects by K. Bahmani, M.R. Mosavi, A. Sadr

    Published 2025-10-01
    “…To this end, a novel approach is proposed to improve the performance of receivers in integrated GNSS systems, which includes two-stage acquisition, fuzzy logic, and a weighting mechanism based on the Weighted Least Squares (WLS) algorithm. …”
    Get full text
    Article
  2. 222

    RFID-embedded mattress for sleep disorder detection for athletes in sports psychology by Metin Pekgor, Aydolu Algin, Turhan Toros

    Published 2025-04-01
    “…This approach shows significant potential for sports psychology applications, enabling personalized recovery strategies and performance optimization. Future work will focus on expanding the dataset, integrating additional biometric sensors, and refining algorithms to improve diagnostic accuracy and real-time usability in clinical and home settings.…”
    Get full text
    Article
  3. 223

    Hybrid modeling of adsorption process using mass transfer and machine learning techniques for concentration prediction by Jing Lv, Lei Wang

    Published 2025-07-01
    “…Prior to model training, the dataset underwent rigorous preprocessing including outlier removal using the z-score method and normalization. To improve model performance, hyperparameters were optimized using the bio-inspired Barnacles Mating Optimizer (BMO) algorithm. …”
    Get full text
    Article
  4. 224

    Elastic net with Bayesian Density Estimation model for feature selection for photovoltaic energy prediction by Venkatachalam Mohanasundaram, Balamurugan Rangaswamy

    Published 2025-03-01
    “…Research investigations demonstrate that the ELNET-BDE model attains significantly lower Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) than contesting Machine Learning (ML) algorithms like Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting Machines (GBM). …”
    Get full text
    Article
  5. 225

    Development of a Conditional Generative Adversarial Network Model for Television Spectrum Radio Environment Mapping by Oluwatobi Emmanuel Dare, Kennedy Okokpujie, Emmanuel Adetiba, Olabode Idowu-Bismark, Abdultaofeek Abayomi, Raymond Jules Kala, Emmanuel Owolabi, Udeme Christopher Ukpong

    Published 2024-01-01
    “…The model performance was evaluated using mean square error (MSE) and mean absolute error (MAE). 12 different experiments were carried out varying the training parameters of the CGAN architecture to obtain an optimal model. The achieved root mean square error (RMSE) is 0.1145dBm and MAE is 0.0820dBm, which shows the deviation between the ground truth and the generated REM. …”
    Get full text
    Article
  6. 226

    Estimation of Current RMS for DC Link Capacitor of S-PMSM Drive System by ZHANG Zhigang, CHANG Jiamian, ZHANG Pengcheng

    Published 2023-10-01
    “…The Cotes method eliminates numerous integration calculations, thus improving calculation accuracy. The proposed technique simplifies the tedious calculation process of traditional algorithms and guarantees high calculation accuracy, providing guidance for optimizing the selection of DC link capacitors and the design of life monitoring controllers. …”
    Get full text
    Article
  7. 227

    Edge-Fog Computing-Based Blockchain for Networked Microgrid Frequency Support by Ying-Yi Hong, Francisco I. Alano, Yih-der Lee, Chia-Yu Han

    Published 2025-01-01
    “…The parameters and hyperparameters of the LSTM-MFPC are optimized using the Bayesian Adaptive Direct Search (BADS) algorithm. …”
    Get full text
    Article
  8. 228

    Deep Mining on the Formation Cycle Features for Concurrent SOH Estimation and RUL Prognostication in Lithium-Ion Batteries by Dongchen Yang, Weilin He, Xin He

    Published 2025-04-01
    “…Models that integrate all formation-related data yielded the lowest root mean square error (RMSE) of 2.928% for capacity estimation and 16 cycles for RUL prediction, highlighting the significant role of surface-level physical features in improving accuracy. …”
    Get full text
    Article
  9. 229

    Comparison of Machine Learning Methods for Predicting Electrical Energy Consumption by Retno Wahyusari, Sunardi Sunardi, Abdul Fadlil

    Published 2025-02-01
    “…Data pre-processing, specifically min-max normalization, is crucial for improving the accuracy of distance-based algorithms like KNN. …”
    Get full text
    Article
  10. 230

    Prediction Model of Household Carbon Emission in Old Residential Areas in Drought and Cold Regions Based on Gene Expression Programming by Shiao Chen, Yaohui Gao, Zhaonian Dai, Wen Ren

    Published 2025-07-01
    “…., electricity usage and heating energy consumption) were selected using Pearson correlation analysis and the Random Forest (RF) algorithm. Subsequently, a hybrid prediction model was constructed, with its parameters optimized by minimizing the root mean square error (RMSE) as the fitness function. …”
    Get full text
    Article
  11. 231

    Predicting hydrocarbon reservoir quality in deepwater sedimentary systems using sequential deep learning techniques by Xiao Hu, Jun Xie, Xiwei Li, Junzheng Han, Zhengquan Zhao, Hamzeh Ghorbani

    Published 2025-07-01
    “…Three sequential deep learning models—Recurrent Neural Network and Gated Recurrent Unit—were developed and optimized using the Adam algorithm. The Adam-LSTM model outperformed the others, achieving a Root Mean Square Error of 0.009 and a correlation coefficient (R2) of 0.9995, indicating excellent predictive performance. …”
    Get full text
    Article
  12. 232

    Mapping Soil Available Nitrogen Using Crop-Specific Growth Information and Remote Sensing by Xinle Zhang, Yihan Ma, Shinai Ma, Chuan Qin, Yiang Wang, Huanjun Liu, Lu Chen, Xiaomeng Zhu

    Published 2025-07-01
    “…In maize plantations, the introduction of EVI data during the grouting period increased R<sup>2</sup> by 0.004–0.033 compared to other growth periods, which is closely related to the nitrogen absorption intensity and spectral response characteristics during the reproductive growth period of crops. (2) Combining the crop types and their optimal period growth information could improve the mapping accuracy, compared with only using the bare soil period image (R<sup>2</sup> = 0.597)—the R<sup>2</sup> increased by 0.035, the root mean square error (RMSE) decreased by 0.504%, and the mapping accuracy of R<sup>2</sup> could be up to 0.632. (3) The mapping accuracy of the bare soil period image differed significantly among different months, with a higher mapping accuracy for the spring data than the fall, the R<sup>2</sup> value improved by 0.106 and 0.100 compared with that of the fall, and the month of April was the optimal window period of the bare soil period in the present study area. …”
    Get full text
    Article
  13. 233

    Observer of changes in the forest of the shortest paths on dynamic graphs of transport networks by N. V. Khajynova, M. P. Revotjuk, L. Y. Shilin

    Published 2020-09-01
    “…The purpose of the work is the development of basic data structures, speed-efficient and memoryefficient algorithms for tracking changes in predefined decisions about sets of shortest paths on transport networks, notifications about which are received by autonomous coordinated transport agents with centralized or collective control. …”
    Get full text
    Article
  14. 234

    Calibration of the Composition of Low-Alloy Steels by the Interval Partial Least Squares Using Low-Resolution Emission Spectra with Baseline Correction by M. V. Belkov, K. Y. Catsalap, M. A. Khodasevich, D. A. Korolko, A. V. Aseev

    Published 2024-04-01
    “…Further improvement of calibration accuracy was achieved by using the adaptive iteratively reweighted penalized least squares algorithm for spectrum baseline correction. …”
    Get full text
    Article
  15. 235

    Machine learning analysis of molecular dynamics properties influencing drug solubility by Zeinab Sodaei, Saeid Ekrami, Seyed Majid Hashemianzadeh

    Published 2025-07-01
    “…The Gradient Boosting algorithm achieved the best performance with a predictive R2 of 0.87 and an RMSE of 0.537 in test set. …”
    Get full text
    Article
  16. 236

    Multi-Fidelity Machine Learning for Identifying Thermal Insulation Integrity of Liquefied Natural Gas Storage Tanks by Wei Lin, Meitao Zou, Mingrui Zhao, Jiaqi Chang, Xiongyao Xie

    Published 2024-12-01
    “…The results of the data experiments demonstrate that the multi-fidelity framework outperforms models trained solely on low- or high-fidelity data, achieving a coefficient of determination of 0.980 and a root mean square error of 0.078 m. Three machine learning algorithms—Multilayer Perceptron, Random Forest, and Extreme Gradient Boosting—were evaluated to determine the optimal implementation. …”
    Get full text
    Article
  17. 237

    Research on rock burst prediction based on an integrated model by Junming Zhang, Qiyuan Xia, Hai Wu, Sailei Wei, Zhen Hu, Bing Du, Yuejing Yang, Huaixing Xiong

    Published 2025-05-01
    “…Additionally, the sparrow search algorithm (SSA) is employed to optimize hyperparameters, further improving the model’s performance. …”
    Get full text
    Article
  18. 238

    A Real-Time Signal Measurement System Using FPGA-Based Deep Learning Accelerators and Microwave Photonic by Longlong Zhang, Tong Zhou, Jie Yang, Yin Li, Zhiwen Zhang, Xiang Hu, Yuanxi Peng

    Published 2024-11-01
    “…Moreover, parallel optimization strategies are exploited to further reduce latency and support simultaneous frequency and direction measurement tasks. …”
    Get full text
    Article
  19. 239

    Feasibility of Implementing Motion-Compensated Magnetic Resonance Imaging Reconstruction on Graphics Processing Units Using Compute Unified Device Architecture by Mohamed Aziz Zeroual, Natalia Dudysheva, Vincent Gras, Franck Mauconduit, Karyna Isaieva, Pierre-André Vuissoz, Freddy Odille

    Published 2025-05-01
    “…Motion correction in magnetic resonance imaging (MRI) has become increasingly complex due to the high computational demands of iterative reconstruction algorithms and the heterogeneity of emerging computing platforms. …”
    Get full text
    Article
  20. 240

    Revolutionizing Clear-Sky Humidity Profile Retrieval with Multi-Angle-Aware Networks for Ground-Based Microwave Radiometers by Yinshan Yang, Zhanqing Li, Jianping Guo, Yuying Wang, Hao Wu, Yi Shang, Ye Wang, Langfeng Zhu, Xing Yan

    Published 2025-01-01
    “…Based on the 7-year (2018–2024) in situ measurements from Beijing, Nanjing, and Shanghai, validation results reveal that AngleNet achieves substantial improvements, with an average R2 of 0.71 and a root mean square error (RMSE) of 10.39%, surpassing conventional models such as LGBM (light gradient boosting machine) and RF (random forest) by over 10% in both metrics, and demonstrating a remarkable 41% increase in R2 and a 10% reduction in RMSE compared to the previous BRNN method (batch normalization and robust neural network). …”
    Get full text
    Article