Search alternatives:
improved » improve (Expand Search)
cost » most (Expand Search), post (Expand Search)
Showing 101 - 120 results of 1,242 for search 'improved cost optimization algorithm', query time: 0.14s Refine Results
  1. 101

    Optimal Placement of Phasor Measurement Unit in Electrical Grid Using Dingo Optimization Algorithm by ARIYO Funso Kehinde, AYANLADE Samson Oladayo, JIMOH Abdulrasaq, ADEBAYO Moses Taiwo

    Published 2025-05-01
    “…The study utilizes the Dingo Optimization Algorithm, a metaheuristic inspired by nature, to identify the best PMU placement. …”
    Get full text
    Article
  2. 102

    An Improved SLIC Superpixel Segmentation Algorithm Combined with FPGA Technology by HAN Jianhui, LZhi qiang

    Published 2020-02-01
    “…In view of the large amount of calculations, complexity of algorithm and the implementation is slow The paper combines superpixel segmentation technology with FPGA parallel processing technology, and puts forward a method to realize the image segmentation algorithm on FPGA platform SLIC is a kind of fast image segmentation algorithm SLIC has a lot of improvements in efficiency, costing and segmentation results compared with traditional image segmentation algorithm On the basis of the principle of SLIC segmentation algorithm, we made a further improvement algorithm by optimizing the operation and extracting a small number of pixels of the original image to reduce computational complexity Finally, the last of the original image segmentation was achieved by K nearest neighbor classification process We completed the algorithm design on FPGA platform The simulation results show that the improved algorithm has a better segmentation results and the processing speed has about 40% promotion And the improved algorithm has a higher realtime performance…”
    Get full text
    Article
  3. 103

    Improving frequency stability in grid-forming inverters with adaptive model predictive control and novel COA-jDE optimized reinforcement learning by Muhammad Zubair Yameen, Zhigang Lu, Fayez F. M. El-Sousy, Waqar Younis, Baqar Ali Zardari, Abdul Khalique Junejo

    Published 2025-05-01
    “…The offline phase employs a novel Hybrid Crayfish Optimization and Self-Adaptive Differential Evolution Algorithm (COA-jDE) to minimize the cost function $$U_{offline}$$ , deriving optimal control parameters (Q, R) before real-time deployment. …”
    Get full text
    Article
  4. 104
  5. 105
  6. 106

    Renewable energy forecasting using optimized quantum temporal model based on Ninja optimization algorithm by Mona Ahmed Yassen, El-Sayed M. El-kenawy, Mohamed Gamal Abdel-Fattah, Islam Ismael, Hossam El.Deen Salah Mostafa

    Published 2025-04-01
    “…Abstract Artificial intelligence allows improvements in renewable energy systems by increasing efficiency while enhancing reliability and reducing costs. …”
    Get full text
    Article
  7. 107

    Well Pattern optimization as a planning process using a novel developed optimization algorithm by Seyed Hayan Zaheri, Mahdi Hosseini, Mohammad Fathinasab

    Published 2024-11-01
    “…The novelty of this work is the integrated algorithm, which improves searching performance by leveraging the memorizing characteristics of the particle swarm optimization algorithm to enhance genetic algorithm efficiency. …”
    Get full text
    Article
  8. 108

    Multi strategy Horned Lizard Optimization Algorithm for complex optimization and advanced feature selection problems by Marwa M. Emam, Mosa E. Hosney, Reham R. Mostafa, Essam H. Houssein

    Published 2025-06-01
    “…However, when applied to high-dimensional datasets characterized by a vast number of features and limited samples-these methods often suffer from performance degradation and increased computational costs. The Horned Lizard Optimization Algorithm (HLOA) is a nature-inspired metaheuristic that mathematically mimics the adaptive defense mechanisms of horned lizards, including crypsis, skin color modulation, blood-squirting, and escape movements. …”
    Get full text
    Article
  9. 109

    Long short‐term memory‐based forecasting of uncertain parameters in an islanded hybrid microgrid and its energy management using improved grey wolf optimization algorithm by Raji Krishna, Hemamalini S

    Published 2024-12-01
    “…Results demonstrate that the improved grey wolf optimization (IGWO) algorithm is more effective at reducing costs and provides faster optimal solutions.…”
    Get full text
    Article
  10. 110

    Offshore Wind Farm Layout Optimization Considering the Power Collection System Cost by S. G. Obukhov, D. Y. Davydov

    Published 2022-08-01
    “…The change in the size and shape of the boundaries of the wind farm site resulted in an increase in the estimated electricity generation by 2.3 % and a decrease in its cost by 4 %. When optimizing the layout of wind turbines within the fixed boundaries of the site, these indicators are improved by only 1 and 2 % as compared to the original scheme.…”
    Get full text
    Article
  11. 111

    Optimization of machine learning algorithms for proteomic analysis using topsis by Javanbakht T., Chakravorty S.

    Published 2022-11-01
    “…The present study focuses on a new application of the TOPSIS method for the optimization of machine learning algorithms, supervised neural networks (SNN), the quick classifier (QC), and genetic algorithm (GA) for proteomic analysis. …”
    Get full text
    Article
  12. 112

    Robust reinforcement learning algorithm based on pigeon-inspired optimization by Mingying ZHANG, Bing HUA, Yuguang ZHANG, Haidong LI, Mohong ZHENG

    Published 2022-10-01
    “…Reinforcement learning(RL) is an artificial intelligence algorithm with the advantages of clear calculation logic and easy expansion of the model.Through interacting with the environment and maximizing value functions on the premise of obtaining little or no prior information, RL can optimize the performance of strategies and effectively reduce the complexity caused by physical models .The RL algorithm based on strategy gradient has been successfully applied in many fields such as intelligent image recognition, robot control and path planning for automatic driving.However, the highly sampling-dependent characteristics of RL determine that the training process needs a large number of samples to converge, and the accuracy of decision making is easily affected by slight interference that does not match with the simulation environment.Especially when RL is applied to the control field, it is difficult to prove the stability of the algorithm because the convergence of the algorithm cannot be guaranteed.Considering that swarm intelligence algorithm can solve complex problems through group cooperation and has the characteristics of self-organization and strong stability, it is an effective way to be used for improving the stability of RL model.The pigeon-inspired optimization algorithm in swarm intelligence was combined to improve RL based on strategy gradient.A RL algorithm based on pigeon-inspired optimization was proposed to solve the strategy gradient in order to maximize long-term future rewards.Adaptive function of pigeon-inspired optimization algorithm and RL were combined to estimate the advantages and disadvantages of strategies, avoid solving into an infinite loop, and improve the stability of the algorithm.A nonlinear two-wheel inverted pendulum robot control system was selected for simulation verification.The simulation results show that the RL algorithm based on pigeon-inspired optimization can improve the robustness of the system, reduce the computational cost, and reduce the algorithm’s dependence on the sample database.…”
    Get full text
    Article
  13. 113

    Design of improved JAYA algorithm for cigarette finished product logistics delivery by Jun Wen, Yewei Hu, Le Li, Zongrui Wu, Guangwei Xiao, Kai Guo, Lei Li

    Published 2025-12-01
    “…In response to these challenges, this study proposes an improved Jaya algorithm that integrates a reverse learning mechanism and a cosine similarity strategy to enhance optimization performance. …”
    Get full text
    Article
  14. 114
  15. 115

    DEVELOPMENT OF THE ALGORITHM FOR CHOOSING THE OPTIMAL SCENARIO FOR THE DEVELOPMENT OF THE REGION'S ECONOMY by I. S. Borisova

    Published 2018-04-01
    “…It was found that the rationale and choice of the optimal scenario is an important stage in the development of the sustainable development program of the regional economy, since it helps to quantify the most probable trajectories of changes in the activities of all participants in the region's economy.Conclusions and Relevance: the practical significance of the developed algorithm lies in the possibility of using it to improve the stability of the development of the economy of specific regions. …”
    Get full text
    Article
  16. 116
  17. 117

    Improved grey wolf optimizer for optimal reactive power dispatch with integration of wind and solar energy by F. Laouafi

    Published 2025-01-01
    “…The aim of this paper is to present a new improved grey wolf optimizer (IGWO) to solve the optimal reactive power dispatch (ORPD) problem with and without penetration of renewable energy resources (RERs). …”
    Get full text
    Article
  18. 118

    Operation Optimization Strategy of Commercial Combined Electric Heating System Based on Particle Swarm Optimization Algorithm by WANG Qing, LI Congcong, WANG Pingxin, WU Qingqing, CAI Xiaoyu

    Published 2023-02-01
    “… In order to improve the energy efficiency of the electric heating system, a particle swarm optimization (PSO, Particle Swarm Optimization)-based operation optimization strategy for the direct storage combined electric heating system is proposed.A mathematical model of influencing factors inside and outside the walls of electric heating buildings is established, and the simulink toolbox in matlab is used to build the overall system under the premise of determining the quantity of electric heating.Combining demand response ideas, the objective function is to establish the minimum heating and electricity cost of the user, and different sub-modules are selected to form the control module to achieve simulation verification, and the inverse cosine method is used to update the improved particle swarm algorithm to update the learning factor to solve the set objective function.Finally, through a calculation example of electricity consumption data of an enterprise in Jinan, Shandong, comparing energy consumption and economy can be obtained: the total energy consumption throughout the day is lower than the actual energy consumption, and the electricity bill is reduced by 17.16% compared with the unoptimized time.…”
    Get full text
    Article
  19. 119
  20. 120