Showing 181 - 192 results of 192 for search 'improve root optimization algorithm', query time: 0.24s Refine Results
  1. 181

    Comparison of Machine Learning Methods for Predicting Electrical Energy Consumption by Retno Wahyusari, Sunardi Sunardi, Abdul Fadlil

    Published 2025-02-01
    “…Data pre-processing, specifically min-max normalization, is crucial for improving the accuracy of distance-based algorithms like KNN. …”
    Get full text
    Article
  2. 182

    Long Short-Term Memory-Based Computerized Numerical Control Machining Center Failure Prediction Model by Jintak Choi, Zuobin Xiong, Kyungtae Kang

    Published 2025-03-01
    “…Using continuous learning based on long short-term memory (LSTM), the system enables anomaly detection, failure prediction, cause analysis, root cause identification, remaining useful life (RUL) prediction, and optimal maintenance timing decisions. …”
    Get full text
    Article
  3. 183

    Construction of a sugar and acid content estimation model for Miliang-1 kiwifruit during storage by LIU Li, YANG Tianyi, DONG Congying, SHI Caiyun, SI Peng, WEI Zhifeng, GAO Dengtao

    Published 2025-01-01
    “…To select the optimal hyperspectral wavelengths for predicting kiwifruit quality, Genetic Algorithm (GA) and Random Frog (RF) methods were employed. …”
    Get full text
    Article
  4. 184

    Digital Land Suitability Assessment for Irrigated Cultivation of Some Agricultural Crops Using Machine Learning Approaches (Case Study: Qazvin-Abyek) by F. Jannati, F. Sarmadian

    Published 2024-09-01
    “…The utilization of modern mapping techniques such as digital soil mapping and machine learning algorithms can significantly improve the accuracy of land suitability assessment and crop performance prediction. …”
    Get full text
    Article
  5. 185

    Elastic net with Bayesian Density Estimation model for feature selection for photovoltaic energy prediction by Venkatachalam Mohanasundaram, Balamurugan Rangaswamy

    Published 2025-03-01
    “…Research investigations demonstrate that the ELNET-BDE model attains significantly lower Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) than contesting Machine Learning (ML) algorithms like Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting Machines (GBM). …”
    Get full text
    Article
  6. 186

    Multi-Fidelity Machine Learning for Identifying Thermal Insulation Integrity of Liquefied Natural Gas Storage Tanks by Wei Lin, Meitao Zou, Mingrui Zhao, Jiaqi Chang, Xiongyao Xie

    Published 2024-12-01
    “…The results of the data experiments demonstrate that the multi-fidelity framework outperforms models trained solely on low- or high-fidelity data, achieving a coefficient of determination of 0.980 and a root mean square error of 0.078 m. Three machine learning algorithms—Multilayer Perceptron, Random Forest, and Extreme Gradient Boosting—were evaluated to determine the optimal implementation. …”
    Get full text
    Article
  7. 187

    PENC: a predictive-estimative nonlinear control framework for robust target tracking of fixed-wing UAVs in complex urban environments by Shiji Hai, Xitai Na, Zhihui Feng, Jinshuo Shi, Qingbin Sun

    Published 2025-08-01
    “…This necessitates tracking algorithms capable of both target state estimation and prediction. …”
    Get full text
    Article
  8. 188

    Developing advanced datadriven framework to predict the bearing capacity of piles on rock by Kennedy C. Onyelowe, Shadi Hanandeh, Viroon Kamchoom, Ahmed M. Ebid, Fabián Danilo Reyes Silva, José Luis Allauca Palta, José Luis Llamuca Llamuca, Siva Avudaiappan

    Published 2025-04-01
    “…The developed framework provides engineers and practitioners with a powerful tool for improving pile design accuracy, reducing uncertainties, and optimizing construction practices. …”
    Get full text
    Article
  9. 189

    Innovative approach for gauge-based QPE in arid climates: comparing neural networks and traditional methods by Bayan Banimfreg, Ernesto Damiani, Vesta Afzali Gorooh, Duncan Axisa, Luca Delle Monache, Youssef Wehbe

    Published 2025-07-01
    “…The superior performance of the neural network approach suggests significant potential for improving water resource management practices, optimizing cloud seeding interventions, and informing policy decisions. …”
    Get full text
    Article
  10. 190

    A Distributed Collaborative Navigation Strategy Based on Adaptive Extended Kalman Filter Integrated Positioning and Model Predictive Control for Global Navigation Satellite System/... by Wanqiang Chen, Yunpeng Jing, Shuo Zhao, Lei Yan, Quancheng Liu, Zichang He

    Published 2025-02-01
    “…This framework predicts and optimizes each robot’s kinematic model, thereby improving the system’s collaborative operations and dynamic decision-making capabilities. …”
    Get full text
    Article
  11. 191

    Exploring Machine Learning Models for Vault Safety in ICL Implantation: A Comparative Analysis of Regression and Classification Models by Qing Zhang, Qi Li, Zhilong Yu, Ruibo Yang, Emmanuel Eric Pazo, Yue Huang, Hui Liu, Chen Zhang, Salissou Moutari, Shaozhen Zhao

    Published 2025-06-01
    “…Model performance was evaluated using metrics including the mean absolute error (MAE) and root mean squared error (RMSE) for regression models, while accuracy, F1-score, and area under the curve (AUC) were used for classification models. …”
    Get full text
    Article
  12. 192

    GIS Analysis Model Integration and Service Composition Prospects by L. Ding, P. Cai, W. Huang, H. Zhang, F. Ding, W. Zhao, D. Tang, Z. Wang

    Published 2025-07-01
    “…Key algorithms are systematically integrated to optimize outcomes in urban planning, disaster management, and precision agriculture. …”
    Get full text
    Article