Search alternatives:
coot » cost (Expand Search)
post » most (Expand Search)
Showing 681 - 700 results of 777 for search 'improve ((coot OR root) OR post) optimization algorithm', query time: 0.26s Refine Results
  1. 681

    Research on rock burst prediction based on an integrated model by Junming Zhang, Qiyuan Xia, Hai Wu, Sailei Wei, Zhen Hu, Bing Du, Yuejing Yang, Huaixing Xiong

    Published 2025-05-01
    “…Additionally, the sparrow search algorithm (SSA) is employed to optimize hyperparameters, further improving the model’s performance. …”
    Get full text
    Article
  2. 682

    Corrective soft bus-bar splitting for reliable operation of hybrid AC/DC grids by Basel Morsy, Matthew Deakin, Adolfo Anta, Jochen Cremer

    Published 2025-08-01
    “…This has sparked renewed interest in optimizing network capacity utilization. This paper explores the synergy between two flexibility-enhancing methods in hybrid AC/DC grids: Voltage Source Converter (VSC) set-point control pre- and post-contingency, and corrective Network Topology Reconfiguration (NTR). …”
    Get full text
    Article
  3. 683

    ARIMA-Kriging and GWO-BiLSTM Multi-Model Coupling in Greenhouse Temperature Prediction by Wei Zhou, Shuo Liu, Junxian Guo, Na Liu, Zhenglin Li, Chang Xie

    Published 2025-04-01
    “…Utilizing the high-quality data processed by this model, this study proposes and constructs a novel Grey Wolf Optimizer and Bidirectional Long Short-Term Memory (GWO-BiLSTM) temperature prediction framework, which combines a Grey Wolf Optimizer (GWO)-enhanced algorithm with a Bidirectional Long Short-Term Memory (BiLSTM) network. …”
    Get full text
    Article
  4. 684
  5. 685

    Leveraging Feature Sets and Machine Learning for Enhanced Energy Load Prediction: A Comparative Analysis by Fernando Pedro Silva Almeida, Mauro Castelli, Nadine Côrte-Real

    Published 2024-12-01
    “…This model achieved a Mean Squared Error of approximately 0.002-0.003, Mean Absolute Error of around 0.031-0.034, and Root Mean Squared Error of about 0.052-0.069. These findings contribute to improved building cooling load management, promoting insights into optimal energy utilization and sustainable building practices.   …”
    Get full text
    Article
  6. 686

    Integrating status-neutral and targeted HIV testing in Zimbabwe: A complementary strategy. by Hamufare D Mugauri, Owen Mugurungi, Joconiah Chirenda, Kudakwashe Takarinda, Prosper Mangwiro, Mufuta Tshimanga

    Published 2025-01-01
    “…This combined approach optimizes resource use, particularly in low- and middle-income countries, and contributes to improved health outcomes and reduced HIV transmission rates.…”
    Get full text
    Article
  7. 687

    Brachial Plexopathy in Head and Neck Cancer Potentially Related to LET-Dependent RBE by Abanob Hanna, Anthony Casper, Roi Dagan, Hardev S. Grewal, Jiyeon Park, Eric D. Brooks, Erik Traneus, Lars Glimelius, Perry B. Johnson, Mohammad Saki, Yawei Zhang, Twyla R. Willoughby, Julie A. Bradley, Jackson Browne, Mark E. Artz

    Published 2025-05-01
    “…Conservative treatment with pentoxifylline, gabapentin, and physical therapy improved his symptoms. (2) Methods: The original treatment plan was retrospectively analyzed using Monte Carlo dose algorithms and LET-dependent RBE models from McMahon and McNamara. …”
    Get full text
    Article
  8. 688

    Electrophysiological changes in the acute phase after deep brain stimulation surgery by Lucia K. Feldmann, Diogo Coutinho Soriano, Jeroen Habets, Valentina D'Onofrio, Jonathan Kaplan, Varvara Mathiopoulou, Katharina Faust, Gerd-Helge Schneider, Doreen Gruber, Georg Ebersbach, Hayriye Cagnan, Andrea A. Kühn

    Published 2025-09-01
    “…Background: With the introduction of sensing-enabled deep brain stimulation devices, characterization of long-term biomarker dynamics is of growing importance for treatment optimization. The microlesion effect is a well-known phenomenon of transient clinical improvement in the acute post-operative phase. …”
    Get full text
    Article
  9. 689

    Gap-filling of land surface temperature in arid regions by combining Landsat 8 and 9 imageries by Fahime Arabi Aliabad, Ebrahim Ghaderpour, Ahmad Mazidi, Fatemeh Houshmandzade

    Published 2024-01-01
    “…The aims of this research are to determine the optimal parameters for the reconstruction of Landsat-LST images, required in many applications, by the harmonic analysis of time series algorithm (HANTS) and to investigate the possibility of improving LST reconstruction accuracy using Landsat 8 and 9 images simultaneously. …”
    Get full text
    Article
  10. 690

    Machine Learning Approach to Model Soil Resistivity Using Field Instrumentation Data by Md Jobair Bin Alam, Ashish Gunda, Asif Ahmed

    Published 2025-01-01
    “…The ability to infer these variables through a singular measurable soil property, soil resistivity, can potentially improve sub-surface characterization. This research leverages various machine learning algorithms to develop predictive models trained on a comprehensive dataset of sensor-based soil moisture, matric suction, and soil temperature obtained from prototype ET covers, with known resistivity values. …”
    Get full text
    Article
  11. 691

    Leveraging petrophysical and geological constraints for AI-driven predictions of total organic carbon (TOC) and hardness in unconventional reservoir prospects by Nandito Davy, Ammar El-Husseiny, Umair bin Waheed, Korhan Ayranci, Manzar Fawad, Mohamed Mahmoud, Nicholas B. Harris

    Published 2024-12-01
    “…Our optimized models achieved R2 (coefficient of determination) of 0.89 and RMSE (root-mean-square error) of 0.47 for TOC predictions and 0.90 and 34.8 for hardness predictions, reducing RMSE by up to 13.52% compared to the unconstrained model. …”
    Get full text
    Article
  12. 692

    Alpine Meadow Fractional Vegetation Cover Estimation Using UAV-Aided Sentinel-2 Imagery by Kai Du, Yi Shao, Naixin Yao, Hongyan Yu, Shaozhong Ma, Xufeng Mao, Litao Wang, Jianjun Wang

    Published 2025-07-01
    “…Subsequently, four machine learning models were employed for an accurate FVC inversion, using the estimated FVC values and UAV-derived reference FVC as inputs, following feature importance ranking and model parameter optimization. The results showed that: (1) Machine learning algorithms based on Sentinel-2 and UAV imagery effectively improved the accuracy of FVC estimation in alpine meadows. …”
    Get full text
    Article
  13. 693
  14. 694
  15. 695

    A deep neural network framework for estimating coastal salinity from SMAP brightness temperature data by Yidi Wei, Qing Xu, Qing Xu, Xiaobin Yin, Xiaobin Yin, Yan Li, Yan Li, Kaiguo Fan

    Published 2025-06-01
    “…The framework leverages machine learning interpretability tools (Shapley Additive Explanations, SHAP) to optimize input feature selection and employs a grid search strategy for hyperparameter tuning.Results and discussionSystematic validation against independent in-situ measurements demonstrates that the baseline DNN model constructed for the entire region and time period outperforms conventional algorithms including K-Nearest Neighbors, Random Forest, and XGBoost and the standard SMAP SSS product, achieving a reduction of 36.0%, 33.4%, 40.1%, and 23.2%, respectively in root mean square error (RMSE). …”
    Get full text
    Article
  16. 696

    Feasibility of Implementing Motion-Compensated Magnetic Resonance Imaging Reconstruction on Graphics Processing Units Using Compute Unified Device Architecture by Mohamed Aziz Zeroual, Natalia Dudysheva, Vincent Gras, Franck Mauconduit, Karyna Isaieva, Pierre-André Vuissoz, Freddy Odille

    Published 2025-05-01
    “…Motion correction in magnetic resonance imaging (MRI) has become increasingly complex due to the high computational demands of iterative reconstruction algorithms and the heterogeneity of emerging computing platforms. …”
    Get full text
    Article
  17. 697

    Proactive dynamic flooding regulations for river basins in China’s arid and semi-arid region of Xinjiang by Xintong Gong, Qiang Zhang, Senlin Tang, Yungang Bai, Vijay P. Singh, Zhenlin Lu

    Published 2025-06-01
    “…We used an improved pre-release constraint algorithm, such as the long-short-series mean correction method, and evaluated the flood stage potential during the aforementioned three intervals. …”
    Get full text
    Article
  18. 698

    Revolutionizing Clear-Sky Humidity Profile Retrieval with Multi-Angle-Aware Networks for Ground-Based Microwave Radiometers by Yinshan Yang, Zhanqing Li, Jianping Guo, Yuying Wang, Hao Wu, Yi Shang, Ye Wang, Langfeng Zhu, Xing Yan

    Published 2025-01-01
    “…Based on the 7-year (2018–2024) in situ measurements from Beijing, Nanjing, and Shanghai, validation results reveal that AngleNet achieves substantial improvements, with an average R2 of 0.71 and a root mean square error (RMSE) of 10.39%, surpassing conventional models such as LGBM (light gradient boosting machine) and RF (random forest) by over 10% in both metrics, and demonstrating a remarkable 41% increase in R2 and a 10% reduction in RMSE compared to the previous BRNN method (batch normalization and robust neural network). …”
    Get full text
    Article
  19. 699

    Enhancing Model Accuracy of UAV-Based Biomass Estimation by Evaluating Effects of Image Resolution and Texture Feature Extraction Strategy by Yaxiao Niu, Xiaoying Song, Liyuan Zhang, Lizhang Xu, Aichen Wang, Qingzhen Zhu

    Published 2025-01-01
    “…Maize AGB estimation models were established based on SIs only and combination of SIs and TFs using machine learning algorithms. We explored the impacts of spatial resolution and TF_CP on the performance of AGB models and analyzed the potentials of combination of SIs and TFs for improving maize AGB estimation accuracy. …”
    Get full text
    Article
  20. 700