Search alternatives:
coot » cost (Expand Search)
Showing 1,001 - 1,020 results of 1,755 for search 'improve ((coot OR most) OR root) optimization algorithm', query time: 0.27s Refine Results
  1. 1001

    Optimal Allocation Strategy for Power Quality Control Devices Based on Harmonic and Three-Phase Unbalance Comprehensive Evaluation Indices for Distribution Network by Fang ZHUO, Zebin YANG, Hao YI, Guangyu YANG, Meng WANG, Xiaoqing YIN, Chengzhi ZHU

    Published 2020-11-01
    “…Secondly, taking the global configuration effects, the total number and capacity of control devices as the optimization goals, and regarding the harmonic distortions and unbalance degrees of the nodes satisfying the standard as the constraint condition, the optimal configuration node and capacity of each device is determined by multi-objective particle swarm algorithm. …”
    Get full text
    Article
  2. 1002

    Effective Facial Expression Recognition System Using Artificial Intelligence Technique by Imad S. Yousif, Tarik A. Rashid, Ahmed S. Shamsaldin, Sabat A. Abdulhameed, Abdulhady Abas Abdullah

    Published 2024-12-01
    “…This paper presents an improved performance of the Facial Expression Recognition (FER) systems via augmentation in Artificial Neural Networks and Genetic Algorithms, two renowned artificial intelligence techniques possessing disparate strengths. …”
    Get full text
    Article
  3. 1003

    Spatial Downscaling of TRMM Precipitation Data Using an Optimal Subset Regression Model with NDVI and Terrain Factors in the Yarlung Zangbo River Basin, China by Jinping Liu, Wanchang Zhang, Ning Nie

    Published 2018-01-01
    “…After downscaling, the bias between TRMM 3B43 and rain gauge data decreased considerably from 0.397 to 0.109, the root-mean-square error decreased from 235.16 to 124.60 mm, and the r2 increased from 0.54 to 0.61, indicating significant improvement in the spatial resolution and accuracy of the TRMM 3B43 data. …”
    Get full text
    Article
  4. 1004

    Optimization of grading rings for 1000 kV dry-type air-core shunt reactor based on hybrid RBFNN–Kriging surrogate model by Yiqin Liu, Liang Xie, Dongyang Li, Yunpeng Liu, Kexin Liu, Gang Liu

    Published 2025-05-01
    “…Aiming to reduce the maximum electric field strength of the reactor, this paper proposes a hybrid surrogate model that combines Radial Basis Function Neural Network (RBFNN) and the Kriging model to optimize the configuration of grading rings. First, the sparrow search algorithm is used to optimize the hyperparameters of the RBFNN. …”
    Get full text
    Article
  5. 1005

    Hyperspectral Anomaly Detection by Spatial–Spectral Fusion Based on Extreme Value-Entropy Band Selection and Cauchy Graph Distance Optimization by Song Zhao, Yali Lv, Wen Zhang, Lijun Wang, Zhiru Yang, Gaofeng Ren, Bin Wang, Xiaobin Zhao, Tongwei Lu, Jiayao Wang, Wei Li

    Published 2025-01-01
    “…This algorithm combines spectral extremum detection with information entropy filtering to select the most representative bands by considering multidimensional information. …”
    Get full text
    Article
  6. 1006

    Hybrid Models for Forecasting Allocative Localization Error in Wireless Sensor Networks by Guo Li, Hongyu Sheng

    Published 2025-12-01
    “…The approach utilizes Radial Basis Function (RBF) models enhanced with advanced optimization algorithms, including Coot Optimization Algorithm (COA), Smell Agent Optimization (SAO), and Northern Goshawk Optimization (NGO) to improve ALE prediction accuracy. …”
    Get full text
    Article
  7. 1007

    A deep dive into artificial intelligence with enhanced optimization-based security breach detection in internet of health things enabled smart city environment by S Jayanthi, Sodagudi Suhasini, N. Sharmili, E. Laxmi Lydia, V. Shwetha, Bibhuti Bhusan Dash, Mrinal Bachute

    Published 2025-07-01
    “…For the selection of the feature process, the proposed SADDBN-AMOA model designs a slime mould optimization (SMO) model to select the most related features from the data. …”
    Get full text
    Article
  8. 1008

    Explainable AutoML models for predicting the strength of high-performance concrete using Optuna, SHAP and ensemble learning by Muhammad Salman Khan, Tianbo Peng, Tianbo Peng, Muhammad Adeel Khan, Asad Khan, Mahmood Ahmad, Mahmood Ahmad, Kamran Aziz, Mohanad Muayad Sabri Sabri, N. S. Abd EL-Gawaad

    Published 2025-01-01
    “…Compared to a baseline model from the literature, O-LGB achieved significant improvements in predictive performance. For compressive strength, it reduced the Mean Absolute Error (MAE) by 87.69% and the Root Mean Squared Error (RMSE) by 71.93%. …”
    Get full text
    Article
  9. 1009

    A state-of-the-art novel approach to predict potato crop coefficient (Kc) by integrating advanced machine learning tools by Saad Javed Cheema, Masoud Karbasi, Gurjit S. Randhawa, Suqi Liu, Travis J. Esau, Kuljeet Singh Grewal, Farhat Abbas, Qamar Uz Zaman, Aitazaz A. Farooque

    Published 2025-08-01
    “…A machine learning approach using XGBoost, optimized with the Chaos Game algorithm (CGO-XGBoost), was employed to predict Kc. …”
    Get full text
    Article
  10. 1010
  11. 1011

    Estimating forest aboveground carbon sink based on landsat time series and its response to climate change by Kun Yang, Kai Luo, Jialong Zhang, Bo Qiu, Feiping Wang, Qinglin Xiao, Jun Cao, Yunrun He, Jian Yang

    Published 2025-01-01
    “…We found that (1) GA can effectively improve the estimation accuracy of RF, the R 2 can be improved by up to 34.8%, and the optimal GA-RF model R 2 is 0.83. (2) The CSI of Pinus densata in Shangri-La was 0.45–0.72 t C·hm− 2 from 1987 to 2017. (3) Precipitation has the most significant effect on CSI. …”
    Get full text
    Article
  12. 1012

    Improving TerraClimate hydroclimatic data accuracy with XGBoost for regions with sparse gauge networks: A case study of the Meknes plateau and the Middle Atlas Causse, Morocco by Hammoud Yassine, Allali Youssef, Saadane Abderrahim

    Published 2025-06-01
    “…Applying the XGBoost algorithm significantly improves the raw TerraClimate data, reducing the average Mean Absolute Error (MAE) across all parameters from 3.08 to 0.29, and the average Root Mean Square Error (RMSE) from 4.84 to 0.46, and increasing the average Nash-Sutcliffe Efficiency (NSE) from 0.82 to 0.99. …”
    Get full text
    Article
  13. 1013

    Facilitating real-time LED-based photoacoustic imaging with DenP2P: An optimized conditional generative adversarial deep learning solution by Avijit Paul, Srivalleesha Mallidi

    Published 2025-05-01
    “…Signal quality can be improved by traditional noise removal algorithms, but deep learning models outperform non-learning methods. …”
    Get full text
    Article
  14. 1014

    Reconstruction of Highway Vehicle Paths Using a Two-Stage Model by Weifeng Yin, Junyong Zhai, Yongbo Yu

    Published 2025-02-01
    “…In the first stage, a Gaussian Mixture Model (GMM) is integrated into a path choice model to estimate the mean and standard deviation of travel times for each road segment, utilizing an improved Expectation Maximization (EM) algorithm. In the second stage, based on the estimated time parameters, path choice prior probabilities and observed data are combined using maximum likelihood estimation to infer the most probable paths among candidate routes. …”
    Get full text
    Article
  15. 1015

    Construction and application of a digital twin model for multi-objectiveoptimization of intelligent tape conveyor system by Wei CHEN, Jingzhao LI, Qing SHI, Jichao LIU, Huashun LI

    Published 2024-12-01
    “…Moreover, forecast values of sweep force at the current moment help formulate the dispatch plan for the cleaning mechanism in the next moment, thus ensuring precise control of the physical model. The Improved Whale Optimization Algorithm (IWOA) is employed to optimize parameters in this blueprint, facilitating real-time scheduling by rapidly converging to the global optimum. …”
    Get full text
    Article
  16. 1016
  17. 1017
  18. 1018

    Classification of Paddy Rice Planting Area Through Feature Selection Method Using Sentinel-1/2 Time Series Images by Shiyu Zhang, Pengao Li, Yong Xie, Wen Shao, Xueru Tian

    Published 2025-01-01
    “…Therefore, this study took Liyang City as the study area, reconstructed Sentinel-2 cloud-free time series optical images, and extracted spectral features, vegetation indexes, and other features, in combination with the polarization features of the Sentinel-1 time series radar images. The optimal feature subset was selected through the feature selection method, and machine learning algorithms were optimized for paddy rice planting area classification. …”
    Get full text
    Article
  19. 1019

    Accelerated Reconstruction of Scenes Using CUDA-Based Parallel Computing by Gui Zou, Jin Jiang, Qi Chen

    Published 2025-01-01
    “…Since the drone needs to use an embedded onboard computer and stereo matching algorithms require massive computing resources, this paper studies the optimization of CUDA-based stereo matching algorithms on embedded devices to improve the reconstruction effect of scenes and achieve rapid reconstruction, thereby reducing time costs, and enhancing drone efficiency.…”
    Get full text
    Article
  20. 1020