Search alternatives:
coot » cost (Expand Search)
Showing 1,481 - 1,500 results of 1,617 for search 'improve (((coot OR post) OR most) OR root) optimization algorithm', query time: 0.24s Refine Results
  1. 1481

    Application of precision agriculture technologies for crop protection and soil health by Emogine Mamabolo, Makgabo Johanna Mashala, Ephias Mugari, Tlou Elizabeth Mogale, Norman Mathebula, Kabisheng Mabitsela, Kwabena Kingsley Ayisi

    Published 2025-12-01
    “…Among the technologies, spectral imaging emerged as the most widely used for early detection of plant stress, diseases, and pests, followed by machine learning algorithms, UAVs (Unmanned Aerial Vehicles), and IoT (Internet of Things) devices, all of which enable real-time monitoring and targeted interventions. …”
    Get full text
    Article
  2. 1482

    SiCRNN: A Siamese Approach for Sleep Apnea Identification via Tracheal Microphone Signals by Davide Lillini, Carlo Aironi, Lucia Migliorelli, Leonardo Gabrielli, Stefano Squartini

    Published 2024-12-01
    “…The final detection of <i>apnea</i> events is performed using an unsupervised clustering algorithm, specifically <i>k-means</i>. Multiple experimental runs were carried out to determine the optimal network configuration and the most suitable type and frequency range for the input data. …”
    Get full text
    Article
  3. 1483

    Postmarketing safety evaluation of pemetrexed using FAERS and JADER databases by Luo Lv, Xiangyang Wu, Yubo Ren, Yuli Guo, Haixiong Wang, Xiaofang Li

    Published 2025-05-01
    “…Continuous pharmacovigilance is essential to optimize its clinical use and improve patient safety.…”
    Get full text
    Article
  4. 1484

    Long Short-Term Memory-Based Computerized Numerical Control Machining Center Failure Prediction Model by Jintak Choi, Zuobin Xiong, Kyungtae Kang

    Published 2025-03-01
    “…Using continuous learning based on long short-term memory (LSTM), the system enables anomaly detection, failure prediction, cause analysis, root cause identification, remaining useful life (RUL) prediction, and optimal maintenance timing decisions. …”
    Get full text
    Article
  5. 1485

    Predictive modelling of hexagonal boron nitride nanosheets yield through machine and deep learning: An ultrasonic exfoliation parametric evaluation by Jerrin Joy Varughese, Sreekanth M․S․

    Published 2025-03-01
    “…A suite of machine learning regression models including Adaptive Boosting (AdaBoost) Regressor, Random Forest (RF) Regressor, Linear Regressor (LR), and Classification and Regression Tree (CART) Regressor, was employed alongside a deep neural network (DNN) architecture optimized using various algorithms such as Adaptive Moment Estimation (Adam), Root Mean Square Propagation (RMS Prop), Stochastic Gradient Descent (SGD), and Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). …”
    Get full text
    Article
  6. 1486

    Machine Learning-Based Prediction of Feed Conversion Ratio: A Feasibility Study of Using Short-Term FCR Data for Long-Term Feed Conversion Ratio (FCR) Prediction by Xidi Yang, Liangyu Zhu, Wenyu Jiang, Yiting Yang, Mailin Gan, Linyuan Shen, Li Zhu

    Published 2025-06-01
    “…Feed conversion ratio (FCR) is a critical indicator of production efficiency in livestock husbandry. Improving FCR is essential for optimizing resource utilization and enhancing productivity. …”
    Get full text
    Article
  7. 1487

    Efficient spatio-temporal modeling for sign language recognition using CNN and RNN architectures by Kasian Myagila, Kasian Myagila, Devotha Godfrey Nyambo, Mussa Ally Dida

    Published 2025-08-01
    “…These results show that more effort is required to improve signer independence performance, including the challenges of hand dominance by optimizing spatial features.…”
    Get full text
    Article
  8. 1488

    Predicting Employee Turnover Using Machine Learning Techniques by Adil Benabou, Fatima Touhami, My Abdelouahed Sabri

    Published 2025-01-01
    “…This study aims to identify the most effective machine learning model for predicting employee attrition, thereby providing organizations with a reliable tool to anticipate turnover and implement proactive retention strategies.Objective: This study aims to address the challenge of employee attrition by applying machine learning techniques to provide predictive insights that can improve retention strategies.Methods: Nine machine learning algorithms are applied to a dataset of 1,470 employee records. …”
    Get full text
    Article
  9. 1489

    The artificial intelligence revolution in gastric cancer management: clinical applications by Runze Li, Jingfan Li, Yuman Wang, Xiaoyu Liu, Weichao Xu, Runxue Sun, Binqing Xue, Xinqian Zhang, Yikun Ai, Yanru Du, Jianming Jiang

    Published 2025-03-01
    “…This article comprehensively reviews the latest research status and application of artificial intelligence algorithms in gastric cancer, covering multiple dimensions such as image recognition, pathological analysis, personalized treatment, and prognosis risk assessment. …”
    Get full text
    Article
  10. 1490

    Machine learning-based prediction of physical parameters in heterogeneous carbonate reservoirs using well log data by Fuyong Wang, Xianmu Hou

    Published 2025-06-01
    “…The results demonstrate that GPR achieves the highest accuracy in porosity prediction, with a coefficient of determination (R2) value of 0.7342, while RF proves to be the most accurate for permeability prediction. Despite these improvements, accurately predicting low-permeability zones in heterogeneous carbonate rocks remains a significant challenge. …”
    Get full text
    Article
  11. 1491

    Characterization of Irrigated Rice Cultivation Cycles and Classification in Brazil Using Time Series Similarity and Machine Learning Models with Sentinel Imagery by Andre Dalla Bernardina Garcia, Ieda Del’Arco Sanches, Victor Hugo Rohden Prudente, Kleber Trabaquini

    Published 2025-03-01
    “…The processing of input data and exploratory analysis were performed using a clustering algorithm based on Dynamic Time Warping (DTW), with K-means applied to the time series. …”
    Get full text
    Article
  12. 1492

    A machine learning-based depression risk prediction model for healthy middle-aged and older adult people based on data from the China health and aging tracking study by Fang Xia, Jie Ren, Linlin Liu, Yanyin Cui, Yufang He

    Published 2025-08-01
    “…Several machine learning algorithms, including logistic regression, k-nearest neighbor, support vector machine, multilayer perceptron, decision tree, and XGBoost, were employed to predict the 2-year depression risk. …”
    Get full text
    Article
  13. 1493

    Artificial intelligence tools for engagement prediction in neuromotor disorder patients during rehabilitation by Simone Costantini, Anna Falivene, Mattia Chiappini, Giorgia Malerba, Carla Dei, Silvia Bellazzecca, Fabio A. Storm, Giuseppe Andreoni, Emilia Ambrosini, Emilia Biffi

    Published 2024-12-01
    “…This study aimed at methodologically exploring the performance of artificial intelligence (AI) algorithms applied to structured datasets made of heart rate variability (HRV) and electrodermal activity (EDA) features to predict the level of patient engagement during RAGR. …”
    Get full text
    Article
  14. 1494
  15. 1495
  16. 1496

    Elastic net with Bayesian Density Estimation model for feature selection for photovoltaic energy prediction by Venkatachalam Mohanasundaram, Balamurugan Rangaswamy

    Published 2025-03-01
    “…Research investigations demonstrate that the ELNET-BDE model attains significantly lower Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) than contesting Machine Learning (ML) algorithms like Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting Machines (GBM). …”
    Get full text
    Article
  17. 1497

    Multi-Fidelity Machine Learning for Identifying Thermal Insulation Integrity of Liquefied Natural Gas Storage Tanks by Wei Lin, Meitao Zou, Mingrui Zhao, Jiaqi Chang, Xiongyao Xie

    Published 2024-12-01
    “…The results of the data experiments demonstrate that the multi-fidelity framework outperforms models trained solely on low- or high-fidelity data, achieving a coefficient of determination of 0.980 and a root mean square error of 0.078 m. Three machine learning algorithms—Multilayer Perceptron, Random Forest, and Extreme Gradient Boosting—were evaluated to determine the optimal implementation. …”
    Get full text
    Article
  18. 1498

    Study on debris flow vulnerability of ensemble learning model based on spy technology A case study of upper Minjiang river basin by Yutao Chen, Ning Li, Fucheng Xing, Han Xiang, Zilong Chen

    Published 2025-07-01
    “…Since it is challenging to predict debris flows with precision using traditional methods, machine learning algorithms have been used more and more in this field in recent years. …”
    Get full text
    Article
  19. 1499

    Dynamic Workload Management System in the Public Sector: A Comparative Analysis by Konstantinos C. Giotopoulos, Dimitrios Michalopoulos, Gerasimos Vonitsanos, Dimitris Papadopoulos, Ioanna Giannoukou, Spyros Sioutas

    Published 2025-03-01
    “…Using a dataset encompassing public/private sector experience, educational history, and age, we evaluate the effectiveness of seven machine learning algorithms: Linear Regression, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM), Gradient Boosting Machine (GBM), Bagged Decision Trees, and XGBoost in predicting employee capability and optimizing task allocation. …”
    Get full text
    Article
  20. 1500