-
161
Satellite-Derived Bathymetry Combined With Sentinel-2 and ICESat-2 Datasets Using Deep Learning
Published 2025-01-01“…The model employs BOA to optimize the key hyperparameters of the CNN-BILSTM architecture, thereby improving inversion performance. …”
Get full text
Article -
162
Hybridized Deep Learning Model for Perfobond Rib Shear Strength Connector Prediction
Published 2021-01-01“…In the second scenario, a comparable AI model hybridized with genetic algorithm (GA) as a robust bioinspired optimization approach for optimizing the related predictors for the PRSC is proposed. …”
Get full text
Article -
163
MultS-ORB: Multistage Oriented FAST and Rotated BRIEF
Published 2025-07-01“…Experimental results demonstrate that for blurred images affected by illumination changes, the proposed method improves matching accuracy by an average of 75%, reduces average error by 33.06%, and decreases RMSE (Root Mean Square Error) by 35.86% compared to the traditional ORB algorithm.…”
Get full text
Article -
164
An adaptive continuous threshold wavelet denoising method for LiDAR echo signal
Published 2025-06-01“…The adaptive threshold is dynamically adjusted according to the wavelet decomposition level, and the continuous threshold function ensures continuity with lower constant error, thus optimizing the denoising process. Simulation results show that the proposed algorithm has excellent performance in improving SNR and reducing root mean square error (RMSE) compared with other algorithms. …”
Get full text
Article -
165
Observer of changes in the forest of the shortest paths on dynamic graphs of transport networks
Published 2020-09-01“…The purpose of the work is the development of basic data structures, speed-efficient and memoryefficient algorithms for tracking changes in predefined decisions about sets of shortest paths on transport networks, notifications about which are received by autonomous coordinated transport agents with centralized or collective control. …”
Get full text
Article -
166
Machine learning analysis of molecular dynamics properties influencing drug solubility
Published 2025-07-01“…This research underscores the potential of integrating MD simulations with ML methodologies to improve the accuracy and efficiency of aqueous solubility predictions in drug development.…”
Get full text
Article -
167
Rapid Detection of Key Phenotypic Parameters in Wheat Grains Using Linear Array Camera
Published 2025-05-01“…The errors estimating the comprehensive grain length of five wheat varieties using the extraction algorithm developed in this study, the determination coefficient and root mean square error indices, were 0.986 and 0.0887, respectively, compared with manual measurements. …”
Get full text
Article -
168
Elastic net with Bayesian Density Estimation model for feature selection for photovoltaic energy prediction
Published 2025-03-01“…Research investigations demonstrate that the ELNET-BDE model attains significantly lower Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) than contesting Machine Learning (ML) algorithms like Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting Machines (GBM). …”
Get full text
Article -
169
Estimation of Current RMS for DC Link Capacitor of S-PMSM Drive System
Published 2023-10-01“…The Cotes method eliminates numerous integration calculations, thus improving calculation accuracy. The proposed technique simplifies the tedious calculation process of traditional algorithms and guarantees high calculation accuracy, providing guidance for optimizing the selection of DC link capacitors and the design of life monitoring controllers. …”
Get full text
Article -
170
Edge-Fog Computing-Based Blockchain for Networked Microgrid Frequency Support
Published 2025-01-01“…The parameters and hyperparameters of the LSTM-MFPC are optimized using the Bayesian Adaptive Direct Search (BADS) algorithm. …”
Get full text
Article -
171
Comparison of Machine Learning Methods for Predicting Electrical Energy Consumption
Published 2025-02-01“…Data pre-processing, specifically min-max normalization, is crucial for improving the accuracy of distance-based algorithms like KNN. …”
Get full text
Article -
172
Deep Mining on the Formation Cycle Features for Concurrent SOH Estimation and RUL Prognostication in Lithium-Ion Batteries
Published 2025-04-01“…Models that integrate all formation-related data yielded the lowest root mean square error (RMSE) of 2.928% for capacity estimation and 16 cycles for RUL prediction, highlighting the significant role of surface-level physical features in improving accuracy. …”
Get full text
Article -
173
Rapid Quality Assessment of Polygoni Multiflori Radix Based on Near-Infrared Spectroscopy
Published 2024-01-01“…After optimizing the model using CARS, R2C increased by 0.15%, 0.41%, and 0.34%, RMSECV decreased by 0.53%, 0.32%, and 0.24%, R2P increased by 0.21%, 0.63%, and 0.35%, RMSEP decreased by 0.36%, 0.41%, and 0.31%, and RPD increased by 1.1, 0.9, and 0.6, significantly improving the predictive capacity of the model. …”
Get full text
Article -
174
Prediction Model of Household Carbon Emission in Old Residential Areas in Drought and Cold Regions Based on Gene Expression Programming
Published 2025-07-01“…., electricity usage and heating energy consumption) were selected using Pearson correlation analysis and the Random Forest (RF) algorithm. Subsequently, a hybrid prediction model was constructed, with its parameters optimized by minimizing the root mean square error (RMSE) as the fitness function. …”
Get full text
Article -
175
Predicting hydrocarbon reservoir quality in deepwater sedimentary systems using sequential deep learning techniques
Published 2025-07-01“…Three sequential deep learning models—Recurrent Neural Network and Gated Recurrent Unit—were developed and optimized using the Adam algorithm. The Adam-LSTM model outperformed the others, achieving a Root Mean Square Error of 0.009 and a correlation coefficient (R2) of 0.9995, indicating excellent predictive performance. …”
Get full text
Article -
176
Calibration of the Composition of Low-Alloy Steels by the Interval Partial Least Squares Using Low-Resolution Emission Spectra with Baseline Correction
Published 2024-04-01“…Further improvement of calibration accuracy was achieved by using the adaptive iteratively reweighted penalized least squares algorithm for spectrum baseline correction. …”
Get full text
Article -
177
Multi-Fidelity Machine Learning for Identifying Thermal Insulation Integrity of Liquefied Natural Gas Storage Tanks
Published 2024-12-01“…The results of the data experiments demonstrate that the multi-fidelity framework outperforms models trained solely on low- or high-fidelity data, achieving a coefficient of determination of 0.980 and a root mean square error of 0.078 m. Three machine learning algorithms—Multilayer Perceptron, Random Forest, and Extreme Gradient Boosting—were evaluated to determine the optimal implementation. …”
Get full text
Article -
178
Research on rock burst prediction based on an integrated model
Published 2025-05-01“…Additionally, the sparrow search algorithm (SSA) is employed to optimize hyperparameters, further improving the model’s performance. …”
Get full text
Article -
179
Machine Learning Approach to Model Soil Resistivity Using Field Instrumentation Data
Published 2025-01-01“…The ability to infer these variables through a singular measurable soil property, soil resistivity, can potentially improve sub-surface characterization. This research leverages various machine learning algorithms to develop predictive models trained on a comprehensive dataset of sensor-based soil moisture, matric suction, and soil temperature obtained from prototype ET covers, with known resistivity values. …”
Get full text
Article -
180
Revolutionizing Clear-Sky Humidity Profile Retrieval with Multi-Angle-Aware Networks for Ground-Based Microwave Radiometers
Published 2025-01-01“…Based on the 7-year (2018–2024) in situ measurements from Beijing, Nanjing, and Shanghai, validation results reveal that AngleNet achieves substantial improvements, with an average R2 of 0.71 and a root mean square error (RMSE) of 10.39%, surpassing conventional models such as LGBM (light gradient boosting machine) and RF (random forest) by over 10% in both metrics, and demonstrating a remarkable 41% increase in R2 and a 10% reduction in RMSE compared to the previous BRNN method (batch normalization and robust neural network). …”
Get full text
Article